首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfusion of livers from fed and fasted rats with 0.07--0.1 mM t-butyl hydroperoxide for 15 min decreased the levels of reduced glutathione (GSH) by 1.5 mumol/g liver in both nutritional states. Glutathione disulfide (GSSG) was increased by 70 and 140 nmol/g liver and glutathione mixed disulfides enhanced by 45 and 150 nmol/g liver in livers from fed and fasted animals, respectively. The ratio of GSH/GSSG was decreased from 243 to 58 in fed animals, and from 122 to 8 in fasted animals. The increase of GSSG and the mixed disulfides was nearly parallel until an apparently critical low GSH content of 1.5 mumol/g was reached. Only in livers from fasted rats 14CO2-production from [1-14C]glucose was stimulated upon t-butyl hydroperoxide infusion at the employed rates. Flux of glucose through pentose phosphate cycle rose from 8 to 12% of glucose utilization via glycolysis, whereas in livers from fed animals this portion remained unchanged at 8% Dithio-erythritol reversed pentose phosphate cycle activity as well as GSSG and protein-bound glutathione contents to the original levels. In livers from fasted rats the activity of glucose-6-phosphate dehydrogenase was increased by 34% by t-butyl hydroperoxide infusion.  相似文献   

2.
Urinary excretion of total carnitine in 48-h fasted rats dropped to 0.30 +/- 0.01 mumol/day from 2.23 +/- 0.4 mumol/day found in fed, control animals (mean +/- SEM). Despite this marked retention, the total carnitine content of the whole body remained constant, about 83 mumol, predicting a slow-down in biosynthesis. The conversion of butyrobetaine into carnitine takes place only in the liver in rats. 48 h of starvation caused a decrease in the liver butyrobetaine level from 11.6 +/- 1.19 nmol/g to 9.30 +/- 1.19 nmol/g, which in whole livers corresponds to a decrease from 138 nmol to 61.3 nmol. The conversion rate of butyrobetaine into carnitine was studied with radiolabelled butyrobetaine. 30 min after injection of [3H]butyrobetaine the carnitine pool in the liver of fasted rats was labelled to about the same extent as that in fed rats, but from a butyrobetaine pool with higher specific radioactivity. Therefore, the conversion rate of butyrobetaine into carnitine was reduced. The newly formed carnitine found in the whole body of fasted rats was estimated to be 59% of controls. We conclude that the biosynthesis of carnitine in fasted rats slows down, for which a decreased availability of butyrobetaine in the liver is responsible. Urinary excretion of butyrobetaine in the fasted group decreased to 74.1 nmol/day from the 222-nmol/day control value while the butyrobetaine content of whole body did not significantly decrease (2.85 mumol vs. 3.04 mumol). Urinary excretion of trimethyllysine was also depressed.  相似文献   

3.
The possible direct effects of insulin and glucagon on carnitine uptake by perfused rat liver were studied with L-[3H]carnitine of an initial concentration of 50 microM in the perfusate. Insulin (10 nM) did not significantly affect the uptake by livers from fed animals. However, insulin could reverse the stimulated transport by livers from 24-h fasted animals, reducing the uptake rate from 852 +/- 54.1 to 480 +/- 39.9 (mean +/- S.E.), P less than 0.01 (rates are expressed as nmol per h per 100 g body wt). Glucagon (50 nM) stimulated the uptake rate when livers were either from fed (551 +/- 40.1 vs. 915 +/- 55.3, P less than 0.01) or from fasted animals (852 +/- 54.1 vs. 1142 +/- 88.1, P less than 0.02). Based on these and earlier observations, we propose that the carnitine concentration in rat liver is controlled by insulin and glucagon via cellular transport processes.  相似文献   

4.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

5.
The extent of intracellular glutathione binding to proteins through a disulfide linkage in rat liver was examined quantitatively. The content of glutathione associated with the acid-precipitable fraction and releasable on borohydride treatment was 0.024 +/- 0.016 mumol/g liver, which accounted for less than one per cent of the total glutathione (6-7 mumol/g liver) in the liver of fed rats. Most of the thiol (2-4 mumol/g liver) liberated from liver proteins into the acid-soluble fraction on borohydride reduction in the presence of guanidine hydrochloride was not glutathione but was proteinaceous in nature. The amounts of thiols liberated per g of liver were similar in fed, fasted, and dibutyryl-3',5'-cyclic AMP-treated rats.  相似文献   

6.
The viability of hypothermically perfused dog liver was evaluated with a tissue-slice technique. After being preserved for 72 hr, slices of liver were incubated at 30 degrees C for as long as 2 hr; then water content, K+/Na+ ratio, and ATP concentration were measured. Dog livers were assigned to the following experimental groups: Group 1 (no preservation; control); Group 2 (livers preserved for 72 hr); Group 3 (donor animals pretreated with 3.5 mg/kg of chlorpromazine (CPZ) and 20 mg/kg of methylprednisolone (MP), and livers preserved for 72 hr); Group 4 (livers pretreated with 2-deoxycoformycin (2-DOC), 50 mg/liter, and preserved for 72 hr); and Group 5 (combination of Group 3 and Group 4 treatments). Livers in Groups 2, 3, and 4 lost K+ during preservation, and the mean K+/Na+ ratio significantly decreased from a control value of 4.2 +/- 0.4 to 1.5-1.9 (P less than 0.05). Group 5 livers did not lose K+; mean K+/Na+ ratio was 3.9 +/- 0.5. Fresh livers (no preservation) rapidly reaccumulated K+ when the tissue slices were incubated for 2 hr at 30 degrees C; mean K+/Na+ ratio was 3.7 +/- 0.5. Tissue slices from Group 2 livers (72 hr preservation), and livers pretreated with CPZ-MP (Group 3) or pretreated with 2-DOC (Group 4) did not significantly reaccumulate K+ at 30 degrees C; mean K+/Na+ ratio was 1.7-2.1. Only slices prepared from liver pretreated with both CPZ-MP and 2-DOC reaccumulated K+; mean K+/Na+ ratio was 4.6 +/- 1.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This paper describes multinuclear NMR investigations on the isolated perfused mouse liver to optimize its recovery after cold preservation and normothermic reperfusion. The recovery of livers from fed is better than that from 24 h fasted animals. This better recovery is not due to a higher glycogen content before cold preservation. The recovery of livers from fasted animals is specifically enhanced by the presence of 8 mM alanine in the rinsing solution after cold preservation and in the perfusate of reperfusion. This property is not due to the ability of alanine to compensate for the lack of endogenous substrates since the amount, before cold preservation, of these substrates, is not significantly different in livers from fed and fasted animals. Furthermore, the beneficial effect of alanine is not due to an enhancement of the pyruvate dehydrogenase (PDH) activity in livers from fasted animals. In fact these livers have indeed a smaller PDH activity than the livers from fed animals but dichloroacetate, a known PDH activator has a rather deleterious effect on the recovery of fed and fasted livers. Furthermore alanine protects the fasted livers against this effect. So the beneficial effect of alanine should be due to other causes. Furthermore, we have found on a parallel model of rat isolated perfused liver, that the recovery of steatotic livers which is lower than that of normal fed livers is enhanced by a known vasodilator, pentoxifylin but not by alanine. So alanine does not either play its role through its action on microcirculation. The interaction of alanine with some membrane sodium transporters like that already reported for another protective aminoacid, glycine, is thus possible. A novel NMR method of (23)Na observation in living cells or organs should be of great interest to investigate this hypothesis.  相似文献   

8.
Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway.  相似文献   

9.
Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.  相似文献   

10.
We compared how two methods of hypothermic preservation affect physiological functions of tissue slices of dog liver. Livers were preserved by either (i) cold storage (CS) in Collins' solution or (ii) continuous perfusion (P) with a perfusate, containing hydroxyethyl starch, sodium gluconate, adenosine, and potassium phosphate, recently developed in our laboratory. Livers were cold stored for 6 to 8, 24, or 48 hr, and perfused for 24 or 72 hr. Tissue slices of preserved livers were incubated at 30 degrees C and analyzed for volume control, electrolyte-pump activity (K and Na), and adenine nucleotide concentration. Also, mitochondria were isolated after preservation to quantify respiratory activity. Slice functions of livers preserved for short periods (6 to 8 hr by CS and 24 hr by P) were similar to those for control livers. After normothermic incubation, the mean (+/- SD) water content of tissue (expressed per unit dry mass of tissue) was 2.3 +/- 0.3 kg/kg for control, 2.6 +/- 0.4 kg/kg for 6- to 8-hr CS, and 2.5 +/- 0.5 kg/kg for 24-hr P. Longer periods of preservation resulted in cell swelling, and water content was 3.3 +/- 0.4 kg/kg for 24- to 48-hr CS and 2.8 +/- 0.3 kg/kg for 72-hr P. The mean (+/- SD) K/Na ratio was nearly normal for livers preserved for short periods: 3.7 +/- 0.5 for control, 4.1 +/- 0.2 for 6- to 8-hr CS, and 3.3 +/- 0.4 for 24-hr P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two groups of African green monkeys were fed diets containing 40% of calories as fat with half of the fat calories as either fish oil or lard. The fish oil-fed animals had lower cholesterol concentrations in blood plasma (33%) and low density lipoproteins (LDL) (34%) than did animals fed lard. Size and cholesteryl ester (CE) content of LDL, strong predictors of coronary artery atherosclerosis in monkeys, were significantly less for the fish oil-fed animals although the apoB and LDL particle concentrations in plasma were similar for both diet groups. We hypothesized that decreased hepatic CE secretion led to the smaller size and reduced CE content of LDL in the fish oil-fed animals. Hepatic CE secretion was studied using recirculating perfusion of monkey livers that were infused during perfusion with fatty acids (85% 18:1 and 15% n-3) at a rate of 0.1 mumol/min per g liver. The rate of cholesterol secretion was less (P = 0.055) for the livers of fish oil versus lard-fed animals (3.3 +/- 0.5 vs. 6.0 +/- 1.2 mg/h per 100 g, mean +/- SEM) but the rate of apoB secretion was similar for both groups (0.92 +/- 0.15 vs. 1.01 +/- 0.13 mg/h per 100 g, respectively). The hepatic triglyceride secretion rate was also less (P less than 0.05) for the fish oil-fed animals (8.3 +/- 2.5 vs. 18.3 +/- 4.4 mg/h per 100 g). Liver CE content was lower (P less than 0.006) in fish oil-fed animals (4.1 +/- 0.8 vs. 7.4 +/- 0.7 mg/g) and this was reflected in a lower (P less than 0.04) esterified to total cholesterol ratio of perfusate VLDL (0.21 +/- 0.045 vs. 0.41 +/- 0.06). The hepatic VLDL of animals fed fish oil had 40-50% lower ratios of triglyceride to protein and total cholesterol to protein. From these data we conclude that livers from monkeys fed fish oil secreted similar numbers of VLDL particles as those of lard-fed animals although the hepatic VLDL of fish oil-fed animals were smaller in size and relatively enriched in surface material and depleted of core constituents. Positive correlations between plasma LDL size and both hepatic CE content (r = 0.87) and hepatic VLDL cholesterol secretion rate (r = 0.84) were also found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Alcohol metabolism via alcohol dehydrogenase (ADH) and catalase was studied in perfused rat livers by measuring the oxidation of methanol and butanol, selective substrates for catalase and ADH, respectively. In livers from fasted rats, basal rates of methanol uptake of 15 +/- 1 mumol/g/h were decreased significantly to 8 +/- 2 mumol/g/h by addition of butanol. Concomitantly, pyridine nucleotide fluorescence detected from the liver surface was increased by butanol but not methanol. Both effects of butanol were blocked by an inhibitor of ADH, 4-methylpyrazole, consistent with the hypothesis that elevation of the NADH redox state by butanol inhibited H2O2 production via NAD+-requiring peroxisomal beta-oxidation, leading indirectly to diminished rates of catalase-dependent methanol uptake. In support of this idea, both butanol and butyraldehyde inhibited H2O2 generation. The NADH redox state was also elevated by xylitol, causing a 75% decrease in rates of methanol uptake by livers from fasted rats. This effect was not observed in livers from fed rats unless malate-aspartate shuttle activity was reduced by infusion of the transaminase inhibitor aminooxyacetate. Taken together, these data indicate that generation of reducing equivalents from ADH in the cytosol inhibits H2O2 generation leading to significantly diminished rates of peroxidation of alcohols via catalase. This phenomenon may represent an important physiological mechanism of regulation of ethanol oxidation in intact cells.  相似文献   

13.
In perfused livers from fed rats, rates of glucose production (glycogenolysis) were 133 +/- 12 mumol/g/hr. Infusion of 2 microM verapamil into these livers decreased the rates of glucose production significantly to 97 +/- 15 mumol/g/hr within 10 min. Conversely, rates of production of lactate plus pyruvate (glycolysis) of 64 +/- 6 mumol/g/hr were not significantly altered by verapamil (60 +/- 3 mumol/g/hr). When 50 microM verapamil was infused, however, rates of both glycogenolysis and glycolysis were diminished to 56 +/- 11 and 43 +/- 5 mumol/g/hr, respectively. In perfused livers from fasted rats, infusion of 20 mM fructose increased the rates of production of glucose (gluconeogenesis) significantly from 11 +/- 7 to 121 +/- 17 mumol/g/hr. These rates reached 138 +/- 7 mumol/g/hr upon the simultaneous infusion of verapamil (2 microM). In these livers, fructose also increased rates of production of lactate from 6 +/- 2 to 132 +/- 11 mumol/g/hr, which were further increased to 143 +/- 8 mumol/g/hr when 2 microM verapamil was infused. The results show that calcium-dependent processes involved in hepatic carbohydrate metabolism respond differently to the calcium channel blocker verapamil. Low concentrations of verapamil inhibited glycogenolysis significantly while having no effect on either glycolysis or gluconeogenesis. These data suggest that these two processes have different sensitivities to changes in intracellular calcium concentrations and/or different sources of regulatory calcium.  相似文献   

14.
The purpose of the present study was to investigate the effects of exercise (30 min, 23 m/min, 0% grade) on the hepatic levels of ATP in fasted adrenodemedullated rats, with an intraperitoneal injection of sodium phosphate (Na (2) PO (4 ), 0.91 mM) or saline (NaCl). Sodium phosphate was injected to determine if the postulated decrease in liver ATP during exercise may be changed by providing an excess of phosphate. At the end of exercise, a piece of liver was rapidly freeze clamped and used for the enzymatic determination of ATP levels. Liver ATP, in saline-injected rats, was significantly (P < 0.05) decreased by fasting, compared to fed rats (𝒳 +/- SE: 3. 21 +/- 0.2 vs 2.86+/- 0.2 micromol/g). Exercise in fasted rats decreased even more the ATP response in liver (2.58 +/- 0.14 micromol/g). Injection of Na (2) PO (4) did not significantly (P > 0. 05) alter the pattern of ATP response following these 3 conditions (3.35 +/- 0.14 vs 3.0 +/-0.12 vs 2.57 +/- 0.1 micromol/g), ATP levels being significantly (P <0.05) decreased by the fast and the exercise in the fasted state. Fasting and exercise resulted in a significant (P < 0.05) decrease in liver glycogen and plasma glucose concentrations and an increase in free fatty acid levels in both NaCl- and Na (2 )PO (4) -injected groups. In both injection conditions, beta-hydroxybutyrate and peripheral insulin concentrations were respectively, increased and decreased (P < 0.05) by fasting, while norepinephrine and portal glucagon were decreased (P > 0.05) following exercise. The main effect of the injection of Na ( 2) PO (4) was a stimulation (P < 0.05) of peripheral glucagon response following exercise. It is concluded that exercise results in a decrease in liver ATP levels even in fasted rats and that this decrease is not corrected by Na (2 )PO( 4) administration. The decreased liver ATP levels might be involved in the metabolic adaptations to exercise.  相似文献   

15.
The impact of maternal starvation during Days 17-20 of gestation was examined in 20-day fetal rat brain tissue cultured for 6 days in MEM and 10% adult rat serum. Acetylcholinesterase (AChE) activities were consistently greater in fetal brain cell cultures from starved mothers. When fetal tissues from starved mothers were continuously exposed to 72-h fasted serum, AChE activities increased from 1.03 +/- 0.14 to 1.59 +/- 0.21 mumol/h/mg protein (P less than 0.001). In fetal tissues from fed mothers, lower AChE activities were increased from 0.78 +/- 0.09 to 1.04 +/- 0.07 mumol/h/mg protein (P less than 0.05) when 72-h fasted serum was used to replace the fed serum during incubation. When fetal brain cell cultures from fed mothers were exposed for 6 days to graded concentrations of fed serum (2.5-15%), the activities of AChE fell reciprocally from 1.34 +/- 0.10 to 0.82 +/- 0.12 mumol/h/mg protein (P less than 0.05). The levels of AChE activity in tissues exposed to fasted serum were consistently greater, but fell similarly from 1.62 +/- 0.10 to 0.97 +/- 14 mumol/h/mg protein (P less than 0.01), when serum concentrations were increased from 2.5 to 15%. AChE activities were 30% higher in tissues incubated with cycloheximide 10(-3) M (P less than 0.02). Unlike AChE, fetal brain enolase activities were unaffected by maternal starvation. In fetal brain cell cultures from fed mothers, enolase fell from 1.85 +/- 0.10 to 1.37 +/- 0.12 mumol/min/mg protein following exposure to fasted instead of fed serum (P less than 0.02). In fetal cultures from starved mothers, enolase activities were depressed similarly from 1.76 +/- 0.08 to 1.41 +/- 0.09 mumol/min/mg protein when fasted replaced fed serum (P less than 0.02). Thus, the fetal brain cell cultures appear to maintain enzymatic realignments imposed by maternal starvation for at least 6 days. In addition, serum from fasted animals has significant growth inhibiting properties manifested by heightened activities of AChE and lower activities of enolase.  相似文献   

16.
African green monkeys were fed diets containing either 11% (by weight) fish oil or lard for 2.5 yr. To test the hypothesis that fish oil decreases hepatic secretion of triglyceride (TG) and apoB, livers from these animals were perfused with a fatty acid mixture [85% (w/w) oleate containing [14C]oleate and 15% n-3 containing [3H]eicosapentaenoic acid (EPA)] at a rate of 0.1 mumol fatty acid/min per g liver. Liver perfusate was sampled every 30 min during 4 h of recirculating perfusion. The concentration of triglyceride was similar for livers of animals of both groups and there was no difference between groups in the extent of incorporation of [3H]EPA or [14C]oleate into hepatic TG. While the secretion rate for the mass of TG was less in the fish oil-fed group (8.3 +/- 2.5 vs 18.3 +/- 4.4 mg/h per 100 g liver, P less than 0.05), the apoB secretion rate was similar (0.92 +/- 0.15 vs 1.01 +/- 0.13 mg/h per 100 g liver). Significantly less [3H]EPA was incorporated into secreted TG in the fish oil group (0.4 +/- 0.1 vs 1.0 +/- 0.1% infused dose/h; P less than 0.01). The rate of secretion of [14C]TG was similar for both groups (1.3 +/- 0.3 vs 1.4 +/- 0.1% infused dose/h for fish oil and lard groups, respectively). No significant diet-related differences in [3H]TG or [14C]TG fatty acid specific activity were observed for perfusate TG or hepatic TG. After perfusion, livers from fish oil-fed monkeys contained significantly more [3H]EPA in hepatic phospholipid than livers from lard-fed monkeys (19.5 +/- 1.8 vs 11.4 +/- 1.7% infused dose; P less than 0.01) although hepatic phospholipid mass concentrations were similar. The liver phospholipids of the fish oil group were enriched in n-3 fatty acid mass and were relatively depleted of oleate and linoleate. We conclude that although apoB secretion was unaffected, dietary fish oil significantly decreased hepatic TG secretion through relatively poor utilization of EPA for the synthesis of TG destined for secretion in VLDL; at the same time, increased incorporation of [3H]EPA into hepatic phospholipid accompanied the decreased incorporation into secreted TG and these events may be coupled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A method has been devised to quantitate rates of ketogenesis (acetoacetate + beta-hydroxybutyrate production) in discrete regions of the liver lobule based on changes in NADH fluorescence. In perfused livers from fasted rats, ketogenesis was inhibited nearly completely with either 2-bromoctanoate (600 microM) or 2-tetradecylglycidic acid (25 microM). During inhibition of ketogenesis, a linear relationship (r = 0.90) was observed between decreases in NADH fluorescence detected from the liver surface and decreases in ketone body production. NADH fluorescence was monitored subsequently from individual regions of the liver lobule by placing microlight guides on periportal and pericentral regions of the liver lobule visible on the liver surface. Rates of ketogenesis in sublobular regions were calculated from regional decreases in NADH fluorescence and changes in the rate of ketone body formation by the whole liver during infusion of inhibitors. In the presence of bromoctanoate, ketogenesis was reduced 80% and local rates of ketogenesis were decreased 31 +/- 4 mumol/g/h in periportal areas and 28 +/- 3 mumol/g/h in pericentral regions. Similar results were observed with tetradecylglycidic acid. Therefore, it was concluded that submaximal rates of ketogenesis from endogenous, mainly long-chain fatty acids are nearly equal in periportal and pericentral regions of the liver lobule in liver from fasted rats. Rates of ketogenesis and NADH fluorescence were strongly correlated during fatty acid infusion. Infusion of 250 microM oleate increased NADH fluorescence maximally by 8 +/- 1% over basal values in periportal regions and 17 +/- 4% in pericentral areas. Local rates of ketogenesis, calculated from these changes in fluorescence, increased 35 +/- 6 mumol/g/h in periportal areas and 55 +/- 5 mumol/g/h in pericentral regions. Thus, oleate stimulated ketogenesis nearly 60% more in pericentral than in periportal regions of the liver lobule.  相似文献   

18.
We previously reported that machine perfusion (MP) performed at 20 °C enhanced the preservation of steatotic rat livers. Here, we tested whether rat livers retrieved 30 min after cardiac arrest (NHBDs) were better protected by MP at 20 °C than with cold storage. We compared the recovery of livers from NHBDs with organs obtained from heart beating donors (HBDs) preserved by cold storage. MP technique: livers were perfused for 6 h with UW-G modified at 20 °C. Cold storage: livers were perfused in situ and preserved with UW solution at 4 °C for 6 h. Both MP and cold storage preserved livers were reperfused with Krebs-Heinselet buffer (2 h at 37 °C). AST and LDH release and mitochondrial glutamate dehydrogenase (GDH) levels were evaluated. Parameters assessed included: bile production and biliary enzymes; tissue ATP; reduced and oxidized glutathione (GSH/GSSG); protein–SH group concentration. Livers preserved by MP at 20 °C showed significantly lower hepatic damage at the end of reperfusion compared with cold storage. GDH release was significantly reduced and bile production, ATP levels, GSH/GSSG and protein–SH groups were higher in livers preserved by MP at 20 °C than with cold storage. The best preserved morphology and high glycogen content was obtained with livers submitted to MP at 20 °C. Liver recovery using MP at 20 °C was comparable to recovery with HBDs. MP at 20 °C improves cell survival and gives a better-quality of preservation for livers obtained from NHBDs and may provide a new method for the successful utilization of marginal livers.  相似文献   

19.
The zonal distribution within rat liver of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase, the principal enzymes of fatty acid synthesis, was investigated by using dual-digitonin-pulse perfusion. Analysis of enzyme mass by immunoblotting revealed that, in normally feeding male rats, the periportal/perivenous ratio of acetyl-CoA carboxylase mass was 1.9. The periportal/perivenous ratio of ATP citrate-lyase mass was 1.4, and fatty acid synthase exhibited the largest periportal/perivenous mass gradient, having a ratio of 3.1. This pattern of enzyme distribution was observed in male rats only; in females, the periportal/perivenous ratio of enzyme mass was nearly equal. The periportal/perivenous gradients for acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase observed in fed (and fasted) males were abolished when animals were fasted (48 h) and refed (30 h) with a high-carbohydrate/low-fat diet. As determined by enzyme assay of eluates obtained from the livers of normally feeding male rats, there is also periportal zonation of acetyl-CoA carboxylase activity, expressed either as units per mg of eluted protein or units per mg of acetyl-CoA carboxylase protein, suggesting the existence of gradients in both enzyme mass and specific activity. From these results, we conclude that the enzymes of fatty acid synthesis are zonated periportally in the liver of the normally feeding male rat.  相似文献   

20.
Rabbit livers were preserved by continuous hypothermic (5 degrees C) perfusion at a flow rate of 1 ml/min-1 g-1 for as long as 72 hr. Cell swelling (total tissue water, TTW) and the rate at which intracellular enzymes were released into the perfusate were measured. Livers perfused with a simple NaCl-based solution containing hydroxyethyl starch as a colloid released relatively large amounts of aspartate aminotransferase (AST, 442 +/- 224 u/liter-1 100 g-1) and lactic dehydrogenase (LDH, 1580 +/- 688 u/liter-1 100 g-1) into the perfusate during 72 hr of perfusion. The addition of Ca (0.5 mmol/liter) to the perfusate reduced the leakage of enzymes into the perfusate (AST, 70 +/- 30 u; LDH, 450 +/- 50 u) and reduced cell swelling (TTW, 3.1 kg/kg dry mass vs 4.4 kg/kg dry mass without added Ca). But the use of a higher concentration of Ca (1.5 mmol/liter) caused membrane damage (AST, 4000 +/- 1500 u; LDH, 10,000 +/- 2222 u) and increased cell swelling (TTW, 3.7 kg/kg dry mass). The release of intracellular enzymes caused by continuous perfusion with a chloride-based perfusate also could be reduced by replacing the chloride with lactobionate (AST, 100 +/- 30 u; LDH, 400 +/- 100 u, at 72 hr). In the lactobionate-containing perfusate, the addition of Ca (0.5 or 1.5 mmol/liter) did not alter the rate at which intracellular enzymes were released. There was no tissue swelling after 72 hr of preservation with the lactobionate-containing perfusate, and the TTW (2.1 kg/kg dry mass) was similar to the TTW of freshly harvested rabbit livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号