首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The rate of oxidative deamination of 1,5-diaminopentane by pea-seedling extracts, which contain diamine oxidase [diamine-oxygen oxidoreductase (deaminating), EC 1.4.3.6], was increased by adding pyridoxal or pyridoxal phosphate. 2. Evidence was obtained that pyridoxal does not activate the apoenzyme of diamine oxidase, but prevents the inactivation of the enzyme. 3. This inactivation only occurred when 1,5-diaminopentane was the substrate and depended on a second thermolabile factor in the extract besides the diamine oxidase. 4. Purified diamine oxidase, when catalysing the oxidation of 1,5-diaminopentane, was rapidly inactivated in the presence of peroxidase. 5. The inactivation was prevented not only by pyridoxal and pyridoxal phosphate but also by several unrelated compounds including alpha-oxoglutarate, catechol and o-aminobenzaldehyde. 6. It is suggested that peroxidase catalyses the further oxidation of the product of the oxidative deamination of 1,5-diaminopentane to a compound that inactivates diamine oxidase. 7. The results diminish the relevance of previous evidence that plant diamine oxidase contains pyridoxal phosphate.  相似文献   

2.
Reduction of benzylamine oxidase by p-methoxybenzylamine under anaerobic conditions leads to biphasic absorbance changes at 470 nm. These reflect the intermediate formation of an enzyme substrate complex with spectral properties different from those of native enzyme and fully reduced enzyme. The spectrally modified enzyme-substrate complex exhibits a broad difference absorption band centered around 360 nm. The transient accumulation of this intermediate during reaction can be conveniently followed by stopped-flow techniques at wavelengths between 320 and 360 nm, where contributions from the subsequent reduction of the enzymic 470-nm chromophore are of minor significance. 2. Analogous intermediates exhibiting similar absorption spectra seem to be formed on reduction of the enzyme by benzylamine and other amine substrates which were tested. Substitution of benzylamine as the reducing substrate by [alpha, alpha-2H]benzylamine results in a decreased accumulation of the spectrally modified intermediate. This indicates that its formation is preceded by deprotonation of the alpha-carbon of the amine substrate. 3. Circular dichroism spectra of benzylamine oxidase exhibit a positive band at 360 nm, lending support to the previous conclusion that benzylamine oxidase is a pyridoxal enzyme. Formation of the spectrally modified enzyme-substrate complex then most likely reflects the prototropic shift converting an amine-pyridoxal Schiff-base obtained by rapid pre-equilibration between enzyme and substrate into an aldehyde-pyridoxamine Schiff-base.  相似文献   

3.
Incubation of pure bacterial D-amino acid transaminase with D-serine or erythro-beta-hydroxy-DL-aspartic acid, which are relatively poor substrates, leads to generation of a new absorbance band at 493 nm that is probably the quinonoid intermediate. The 420-nm absorbance band (due to the pyridoxal phosphate coenzyme) decreases, and the 338-nm absorbance band (due to the pyridoxamine phosphate or some other form of the coenzyme) increases. A negative Cotton effect at 493 nm in the circular dichroism spectra is also generated. Closely related D amino acids do not lead to generation of this new absorption band, which has a half-life of the order of several hours. Treatment of the enzyme with the good substrate D-alanine leads to a small but detectable amount of the same absorbance band. D-Serine but not erythro-beta-hydroxyaspartate leads to inactivation of D-amino acid transaminase, and D-alanine affords partial protection. The results indicate that D-serine is a unique type of inhibitor in which the initial steps of the half-reaction of transamination are so slow that a quinonoid intermediate with a 493-nm absorption band accumulates. A derivative formed from this intermediate inactivates the enzyme.  相似文献   

4.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

5.
Anaerobic reaction of ascorbate oxidase with ascorbate   总被引:1,自引:0,他引:1  
Ascorbate oxidase is fully reduced by 4 mol of ascorbate in the absence of air, as monitored by optical and electron paramagnetic resonance spectra. At less than stoichiometric ascorbate concentration there is a slow equilibration between the 605-and 330-nm absorption bands: The 605-nm chromophore is first reduced, then its color reappears while the 330-nm absorption band decreases. Upon reoxidation with air the process takes place in the opposite direction. Intramolecular rather than intermolecular electron exchange appears to be responsible for this process. The reduced protein is about twice as fluorescent as the oxidized protein. The fluorescence quenching in the oxidized protein is related to the 330-nm absorption band rather than to the 605-nm band as previously reported for laccase.  相似文献   

6.
Tryptophanase from Escherichia coli was oriented in a compressed slab of polyacrylamide gel and its linear dichroism (LD) and absorption spectra have been measured. The free enzyme displays four LD bands at 305, 340, 425 and 490 nm. Two bands at 340 and 425 nm belong to the internal coenzyme-lysine aldimine. The 305-nm band apparently belongs to an aromatic amino acid residue. The 490-nm band disappears after treatment with NaBH4 or after incubation with L-alanine and subsequent dialysis. It is suggested that the 490-nm band belongs to a quinonoid enzyme subform. The reaction of tryptophanase with threo-3-phenyl-DL-serine, L-threonine and D-alanine leads to formation of an external aldimine with an intense absorption band at 420-425 nm. The values of reduced LD (delta A/A) in this band strongly differ from that in the 420-nm band of the free enzyme. The LD value of the complex with D-alanine is intermediate between those of the free enzyme and the complex with 3-phenylserine. In the presence of indole the complex with D-alanine displays the same LD as that observed with 3-phenylserine. The reaction of tryptophanase with L-alanine or oxindolyl-L-alanine leads to formation of a quinonoid intermediate with an absorption band near 500 nm. The LD value in this band is close to that of an external aldimine with L-threonine. It is concluded that reorientations of the coenzyme occur in the course of the tryptophanase reaction.  相似文献   

7.
When cytochrome c oxidase is incubated at 43 degrees C for approximately 75 min in a solution containing the zwitterionic detergent sulfobetaine 12, the CuA site is converted into a type II copper as judged by changes in the 830-nm absorption band and the EPR spectrum of the enzyme. SDS-PAGE and sucrose gradient ultracentrifugation indicate concomitant loss of subunit III and monomerization of the enzyme during the heat treatment. Comparison of the optical and resonance Raman spectra of the heat-treated and native protein shows that the heme chromophores are not significantly perturbed; the resonance Raman data indicate that the small heme perturbations observed are limited to the cytochrome a3 site. Proton pumping measurements, conducted on the modified enzyme reconstituted into phospholipid vesicles, indicate that these vesicles are unusually permeable toward protons during turnover, as previously reported for the p-(hydroxymercuri)benzoate-modified oxidase and the modified enzyme obtained by heat treatment in lauryl maltoside. The sulfobetaine 12 modified enzyme is no longer capable of undergoing the recently reported conformational transition in which the tryptophan fluorescence changes upon reduction of the low-potential metal centers. Control studies on the monomeric and subunit III dissociated enzymes suggest that the disruption of this conformational change in the heat-treated oxidase is most likely associated with perturbation of the CuA site. These results lend support to the suggestion that the fluorescence-monitored conformational change of the native enzyme is initiated by reduction of the CuA site [Copeland et al. (1987) Biochemistry 26, 7311].  相似文献   

8.
Treatment of yeast fatty acid synthetase with pyridoxal 5'-phosphate inhibited the enzyme. Assays of the partial activities of the pyridoxal phosphate-treated synthetase showed that only the beta-ketoacyl reductase was significantly inhibited. NADPH prevented inactivation of the enzyme by pyridoxal phosphate, indicating that pyridoxal modifies a residue near or in the beta-ketoacyl reductase site. The pyridoxal-treated synthetase shows a fluorescence spectrum with a maximum of 426 nm after uv irradiation at 325 nm. Binding of the pyridoxal phosphate to the synthetase is reversible as shown by the disappearance of the fluorescence band after dialysis of pyridoxal-treated enzyme. Reduction with NaBH4 of the pyridoxal-treated enzyme eliminates this fluorescence maximum and causes the appearance of a new band at 393 nm. These observations suggest that pyridoxal phosphate interacts with the synthetase by forming a Schiff base with lysine residue at the beta-ketoacyl reductase site. Amino acid analyses of the HCl hydrolysates of the borohydride-reduced, pyridoxal-treated synthetase showed the presence of 6 mol of N6-pyridoxal derivative of lysine per mole of fatty acid synthetase, indicating the presence of six sites of beta-ketoacyl reductase in the native enzyme. Autoradiography of sodium dodecyl sulfate-polyacrylamide gels of the pyridoxal phosphate enzyme reduced with NaB3H4 indicates that the alpha subunit contains the beta-ketoacyl reductase domain. These findings are consistent with the proposed structure of the alpha 6 beta 6 complex required for palmitoyl-CoA synthesis.  相似文献   

9.
Tryptophanase from E. coli displays positive CD in the coenzyme absorption bands at 337 and 420 nm. Breaking of the internal coenzyme-lysine imine bond upon reaction with hydroxylamine or amino-oxyacetate is accompanied by a strong diminution of the positive CD. Interaction of tryptophanase with L-threonine and beta-phenyl-DL-serine(threo form) leads to a decrease in absorbance at 337 nm and to an increase at 425 nm. This is associated with inversion of the CD sign, i.e. with disappearance of the positive CD in the 420-nm band and its replacement by a negative CD. L-Phenylalanine, alpha-methyl-DL-serine and D-alanine cause an increase in absorbance at 425-430 nm and a diminution of the positive CD in this band. In the presence of D-alanine and indole a negative CD appears in the 400-450 nm region. It is inferred that an external coenzyme-quasisubstrate aldimine is formed on interaction of the above amino acids with the enzyme. L-Alanine and oxindolyl-L-alanine evoke an intense narrow absorption band at 500 nm ascribed to a quinonoid intermediate; a positive CD is observed in this band. The dissymmetry factor delta A/A in the 500-nm band is much smaller than that in the absorption bands of the unliganded enzyme. Inversion of the CD sign on formation of the external aldimine and diminution of the dissymmetry factor in the quinonoid band indicate that reorientations of the coenzyme occur in the course of the catalytic action of tryptophanase.  相似文献   

10.
The role of copper in pig kidney diamine oxidase has been probed by examining the effects of potential Cu(II) ligands on the spectroscopic and catalytic properties of the enzyme. In the presence of azide and thiocyanate, new absorption bands are evident at 410 nm (epsilon = 6300 M-1 cm-1) and 365 nm (epsilon = 3000 M-1 cm-1), respectively. These bands are assigned as ligand-to-metal charge-transfer transitions, N3-/SCN- leads to Cu(II). One anion/Cu(II) is coordinated in an equitorial position. Anion binding can be completely reversed by dialysis. The equilibrium constants for diamine oxidase-anion complex formation are 134 M-1 (N3-) and 55 M-1 (SCN-). Azide and thiocyanate are linear uncompetitive inhibitors with respect to the amine substrate when O2 is present at saturating concentrations. Taken together, the data are consistent with a functional role for Cu(II) in diamine oxidase catalysis.  相似文献   

11.
Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.  相似文献   

12.
Pig plasma benzylamine oxidase is a protein containing cupric copper and pyridoxal phosphate. The pyridoxal phosphate is stably linked to the enzyme. Discrepancies in the numbers of active sites per molecule of enzyme are reported in the literature. This paper shows that the fully active pure enzyme contains 3 mol of pyridoxal phosphate per mol, whereas enzymes with a lower specific activity are shown by titration with phenylhydrazine to have a lower pyrdoxal phosphate content.  相似文献   

13.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

14.
Holotryptophanase inactivated by oxidation of cysteinyl residues showed a different absorption spectrum from the native enzyme. At pH 8.0, the native enzyme preferentially existed as a 337-nm species (active form), whereas in the inactive enzyme a 420-nm species (inactive form) was dominant. During the reactivation of the enzyme by reduction with dithiothreitol, an increase at 337 nm and a decrease at 420 nm were observed with concomitant increase in enzymatic activity, which was accompanied by the appearance of two cysteinyl residues per monomer. Specific S-cyanylation of cysteinyl residues by nitrothiocyanobenzoic-acid-inactivated apotryptophanase with the modification of one cysteinyl residue per monomer, whereas holotryptophanase was highly resistant to inactivation with nitrothiocyanobenzoic acid. The essential role of the active-site-bound pyridoxal 5'-phosphate in protection against inactivation was confirmed by the agreement of the K1/2 (protection) of 5.0 microM for pyridoxal 5'-phosphate with Km of 2.0 microM in enzyme catalysis. The inactivation by nitrothiocyanobenzoic acid caused a similar shift in the equilibrium between the 337-nm species and 420-nm species, i.e. decrease of the 337-nm species and increase of the 420-nm species. From the pH dependence of the equilibrium between these two species, pKa of 7.9 and 7.4 was obtained for the inactive and the dithiothreitol-activated enzyme, respectively, indicating that cysteinyl residue(s) participated in lowering the pKa of the interconversion between the 337-nm species (active form) and 420-nm species (inactive form). The possible role of cysteinyl residues in the function of tryptophanase is discussed.  相似文献   

15.
Several methods for the isolation of apparently homogeneous pig kidney diamine oxidase have been reported in recent years (1-7), but these procedures allow to obtain only little amounts of material making very difficult the study of the molecular properties of the enzyme. Drawing useful indication from the purification procedures previously reported, we were able to set up a new method which allows to obtain homogeneous enzyme samples in high yield and with good reproducibility. This procedure allowed to determine with greater accuracy the molecular weight of the enzyme that resulted to be 170,000 daltons by gel chromatography and 145,000 by ultracentrifuge. The enzyme is composed of two apparently identical subunits and contains two copper atoms per dimer. The amino acid composition of the protein has been also worked out and found similar to those already reported for other copper dependent amine oxidases. Pig kidney diamine oxidase is a glycoprotein containing about 20% sugars by weight.  相似文献   

16.
Recently our group synthesized a new class of melanins obtained by the tyrosinase-catalyzed oxidation of opioid peptides (opiomelanins). Owing to the presence of the peptide moiety such pigments exhibit high solubility in hydrophilic solvents, which allows spectroscopic investigations. In particular, the absence of solid-state quenching effects enables the study of melanin fluorescence properties, till now poorly investigated due to the complete insolubility of melanins produced from tyrosine or Dopa. Opiomelanins dissolved in aqueous medium show a characteristic emission peaked at 440 and 520 nm when excited around 330 nm, where a maximum is observed in the absorption spectrum. Kinetic measurements performed on the tyrosinase-catalyzed oxidation of opioid peptides show that the 440-nm fluorescence band arises in the early stages of peptide oxidation, whereas the 520-nm band appears in later stages of oxidation, i.e., during the polymerization of indole-quinone units. Moreover, molecular sieve fractionation shows that in the opiomelanin fraction with a molecular weight lower than 10 kDa the 440-nm band is dominant in the fluorescence spectrum. The breakdown of the polymer induced by hydrogen peroxide and light (i.e., the photobleaching of melanin pigments) produces a marked enhancement of the 440-nm fluorescence band while the 520-nm band disappears. Hence, our findings suggest that the observed fluorescence contains contributions from both oligomeric units (440-nm band) and high-molecular-weight polymers (520-nm band).  相似文献   

17.
1. The inhibition of diamine oxidase has been studied by using the following copper-chelating reagents: 1,10-phenanthroline; 2,2'-bipyridyl; 8-hydroxyquinoline (oxine); diethyldithiocarbamate and dithio-oxamide (rubeanic acid). 2. Addition of chelating reagent caused a rapid inhibition of enzyme to a degree dependent solely on the final inhibitor concentration. Addition of substrate gave linear initial rates of reaction showing that under these conditions the inhibition was not being rapidly reversed. 3. The inhibition has been investigated by using new graphical methods and has been found in all cases to involve the chelating agents completely removing two Cu(2+) ions from the enzyme. An alternative possibility, involving ligand substitution, was eliminated. 4. A value of K=8.0x10(-33)m(-2) has been found for the enzyme in equilibrium with 2 Cu(2+) ions (i.e. beta(2), the stability constant for diamine oxidase/two Cu(2+), is 32.1).  相似文献   

18.
D-Serine dehydratase (DSD) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the conversion of D-serine to pyruvate and ammonia. Spectral studies of enzyme species where the natural cofactor was substituted by pyridoxal 5'-sulfate (PLS), pyridoxal 5-deoxymethylene phosphonate (PDMP), and pyridoxal 5'-phosphate monomethyl ester (PLPMe) were used to gain insight into the structural basis for binding of cofactor and substrate analogues. PDMP-DSD exhibits 35% of the activity of the native enzyme, whereas PLS-DSD and PLPMe-DSD are catalytically inactive. The emission spectrum of native DSD when excited at 280 nm shows maxima at 335 and 530 nm. The energy transfer band at 530 nm is very likely generated as a result of the proximity of Trp-197 to the protonated internal Schiff base. The cofactor analogue-reconstituted DSD species exhibit emission intensities decreasing from PLS-DSD, to PLPMe-DSD, and PDMP-DSD, when excited at 415 nm. Large increases in fluorescence intensity at 530 (540) nm can be observed for cofactor analogue-reconstituted DSD in the presence of substrate analogues when excited at 415 nm. In the absence and presence of substrate analogues, virtually identical far UV CD spectra were obtained for all DSD species. The visible CD spectra of native DSD, PDMP-DSD, and PLS-DSD exhibit a band centered on the visible absorption maximum with nearly identical intensity. Addition of substrate analogues to native and cofactor analogue-reconstituted DSD species results in most cases in a decrease or elimination of ellipticity. The results are interpreted in terms of local conformational changes and/or changes in the orientation of the bound cofactor (analogue).  相似文献   

19.
The intrinsic protein fluorescence of dopamine beta-monooxygenase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) has been characterized. The fluorescence is dominated by emission from tryptophans in a hydrophobic environment. Changes in the conformation of the enzyme induced by anions, pH changes, metal-chelating agents and Cu2+ have been determined. Conformational transitions induced by anions take place at concentrations between 0.05 and 0.2 M. Most anions give rise to a blue-shift, while ClO4- induces a red-shift of the emission spectrum. pH dependence of the protein fluorescence revealed a conformational change between pH 6.0 and 5.0. The interactions between dopamine beta-monooxygenase and seven different metal-chelating agents have been investigated using protein fluorescence, heat inactivation, and inhibition measurements. All the metal-chelating agents are able to remove the active-site copper as demonstrated by complete inhibition of enzyme activity, restoration of activity by the addition of copper, and the observation that the enzyme becomes more sensitive to heat inactivation in the presence of chelating agents, thus behaving similarly to the copper-free apoenzyme. The charge and size of the chelating agents are of importance for the reaction with the active-site copper, which is consistent with a mechanism for removal of the copper, including a ternary enzyme-copper chelating agent complex. By contrast, under turnover conditions in the presence of substrates, dissociation of the active-site copper and chelation of the free copper is a dominating mechanism. Three distinct conformations were characterized on the basis of the fluorescence spectra and the degree of quenching by Cu2+ and I-. For the copper-free apoenzyme a unique binding site for binding of the first copper was demonstrated by larger quenching of the protein fluorescence than for binding of additional copper.  相似文献   

20.
Abstract— Monoamine oxidase was purified approximately 40-fold from beef brain mitochondria. The purification procedure involved extraction with a non-ionic detergent (Nonion NS-210) after heat treatment, ammonium sulphate fractionation, chromatographies on DEAE-cellulose and Sepharose 6B, and a continuous flow electrophoresis. A major component (enzyme 1) with a higher specific activity and a minor component (enzyme 2) with a lower specific activity were separated. Properties of both enzymes towards kynuramine including pH-optimum and Km values were similar, but the enzyme 1 had the higher specific activity towards tyramine whereas that of enzyme 2 was towards normetane-phrine. Fluorescence spectra indicated that the enzyme 1 is a flavoprotein. Copper was not detected, and copper chelating agents did not inhibit the enzyme. p -Chloromercuribenzoate and JV-ethylmaleimide inhibited the enzyme, indicating the presence of the essential SH-groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号