首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We investigated the role of AMPKalpha2in basal, exercise training-, and AICAR-induced protein expression of GLUT4, hexokinase II (HKII), mitochondrial markers, and AMPK subunits. This was conducted in red (RG) and white gastrocnemius (WG) muscle from wild-type (WT) and alpha2-knockout (KO) mice after 28 days of activity wheel running or daily AICAR injection. Additional experiments were conducted to measure acute activation of AMPK by exercise and AICAR. At basal, mitochondrial markers were reduced by approximately 20% in alpha2-KO muscles compared with WT. In both muscle types, AMPKalpha2 activity was increased in response to both stimuli, whereas AMPKalpha1 activity was increased only in response to exercise. Furthermore, AMPK signaling was estimated to be 60-70% lower in alpha2-KO compared with WT muscles. In WG, AICAR treatment increased HKII, GLUT4, cytochrome c, COX-1, and CS, and the alpha2-KO abolished the AICAR-induced increases, whereas no AICAR responses were observed in RG. Exercise training increased GLUT4, HKII, COX-1, CS, and HAD protein in WG, but the alpha2-KO did not affect training-induced increases. Furthermore, AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 subunits were reduced in RG, but not in WG, by 30-60% in response to exercise training. In conclusion, the alpha2-KO was associated with an approximately 20% reduction in mitochondrial markers in both muscle types and abolished AICAR-induced increases in protein expression in WG. However, the alpha2-KO did not reduce training-induced increases in HKII, GLUT4, COX-1, HAD, or CS protein in WG, suggesting that AMPKalpha2 may not be essential for metabolic adaptations of skeletal muscles to exercise training.  相似文献   

3.
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.  相似文献   

4.
5.
5'-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKalpha1 activity in alpha(2)KO mice (90%, P < 0.01) and increased AMPKalpha2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKalpha Thr(172) (WT: 40%, alpha(2)KO: 100%, P < 0.01) and ACCbeta Ser(227) phosphorylation (WT: 70%, alpha(2)KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E(1)alpha site 1 (WT: 20%, alpha(2)KO: 62%, P < 0.01) and site 2 (only alpha(2)KO: 83%, P < 0.01) dephosphorylation and PDH(a) [ approximately 200% in both genotypes (P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the alpha(2)KO mice both at rest and during exercise. The increased PDH(a) activity during exercise was associated with elevated glycolytic flux, and muscles from the alpha(2)KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of alpha(2)KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E(1)alpha phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKalpha2 expression. During exercise, alpha(2)KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDH(a) activity. This may be linked to decreased mitochondrial oxidative capacity.  相似文献   

6.
7.
We previously reported that the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) mRNA in rat epitrochlearis muscle was increased after swimming exercise training. In the present study, we demonstrated further that PGC-1 mRNA expression in the epitrochlearis muscle of 4-5-week-old male Sprague-Dawley rats was increased after a 6-h acute bout of low-intensity swimming exercise. With this increase, the expression level was approximately 8-fold of control and immersion group rats that stayed for 6-h in warm water, maintained at the identical temperature of the swimming barrel (35 degrees C) (p<0.01). Second, PGC-1 mRNA expression in the muscle was found to have increased 6-h after 30 10-s tetani contractions were induced by in vitro electrical stimulation. Finally, PGC-1 mRNA expression in the muscle incubated for 18-h with 0.5mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR: a 5' AMP-activated protein kinase (AMPK) activator) was elevated to approximately 3-fold of the control muscle (n=6, p<0.001). AMPK activity in epitrochlearis muscle after the swimming was also found to be elevated to approximately 4-fold of the pre-exercise value (p<0.001). These results may suggest that an acute bout of low-intensity prolonged swimming exercise directly enhances the PGC-1 mRNA expression in the activated muscle during exercise, possibly through, at least in part, an AMPK-related mechanism.  相似文献   

8.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

9.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.  相似文献   

10.
The purpose of this study was to elucidate the mechanisms underlying low-intensity exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression in rat skeletal muscles. Rats (5-6 wk old) swam without a load and ran on the treadmill at a speed of 13 m/min, respectively, in two 3-h sessions separated by 45 min of rest. PGC-1alpha content in epitrochlearis muscle (EPI) was increased by 75 and 95%, immediately and 6 h after swimming, respectively, with no increase in PGC-1alpha content in the soleus (SOL). After running, PGC-1alpha content in EPI was unchanged, whereas a 107% increase in PGC-1alpha content was observed in SOL 6 h after running. Furthermore, in EPI and SOL as well as other muscles (triceps, plantaris, red and white gastrocnemius), PGC-1alpha expression was enhanced concomitant with reduced glycogen postexercise, suggesting that expression of PGC-1alpha occurs in skeletal muscle recruited during exercise. PGC-1alpha content in EPI was increased after 18-h in vitro incubation with 0.5 mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and 4 mM caffeine. However, AICAR incubation did not affect PGC-1alpha content in the SOL, whereas caffeine incubation increased it. These results suggest that exercise-induced PGC-1alpha expression in skeletal muscle may be mediated by at least two exercise-induced signaling factors: AMPK activation and Ca2+ elevation. The number of factors involved (both AMPK and Ca2+, or Ca2+ only) in exercise-induced PGC-1alpha expression may differ among muscles.  相似文献   

11.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

12.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

13.
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.  相似文献   

14.
Mitochondrial dysfunction, associated with insulin resistance, is characterized by low expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and nuclear-encoded mitochondrial genes. This deficit could be due to decreased physical activity or a decreased response of gene expression to exercise. The objective of this study was to investigate whether a bout of exercise induces the same increase in nuclear-encoded mitochondrial gene expression in insulin-sensitive and insulin-resistant subjects matched for exercise capacity. Seven lean and nine obese subjects took part. Insulin sensitivity was assessed by an 80 mU.m(-2).min(-1) euglycemic clamp. Subjects were matched for aerobic capacity and underwent a single bout of exercise at 70 and 90% of maximum heart rate with muscle biopsies at 30 and 300 min postexercise. Quantitative RT-PCR and immunoblot analyses were used to determine the effect of exercise on gene expression and protein abundance and phosphorylation. In the postexercise period, lean subjects immediately increased PGC-1alpha mRNA level (reaching an eightfold increase by 300 min postexercise) and protein abundance and AMP-dependent protein kinase phosphorylation. Activation of PGC-1alpha was followed by increase of nuclear respiratory factor-1 and cytochrome c oxidase (subunit VIc). However, in insulin-resistant subjects, there was a delayed and reduced response in PGC-1alpha mRNA and protein, and phosphorylation of AMP-dependent protein kinase was transient. None of the genes downstream of PGC-1alpha was increased after exercise in insulin resistance. Insulin-resistant subjects have a reduced response of nuclear-encoded mitochondrial genes to exercise, and this could contribute to the origin and maintenance of mitochondrial dysfunction.  相似文献   

15.
Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor γ coactivator (PGC)-1α has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not known. The aim of the present study was therefore to investigate the role of muscle PGC-1α in acute inflammation. Quadriceps muscles were removed from 10-week old whole body PGC-1α knockout (KO), muscle specific PGC-1α KO (MKO) and muscle-specific PGC-1α overexpression mice (TG), 2 hours after an intraperitoneal injection of either 0.8 μg LPS/g body weight or saline. Basal TNFα mRNA content was lower in skeletal muscle of whole body PGC-1α KO mice and in accordance TG mice showed increased TNFα mRNA and protein level relative to WT, indicating a possible PGC-1α mediated regulation of TNFα. Basal p65 phosphorylation was increased in TG mice possibly explaining the elevated TNFα expression in these mice. Systemically, TG mice had reduced basal plasma TNFα levels compared with WT suggesting a protective effect against systemic low-grade inflammation in these animals. While TG mice reached similar TNFα levels as WT and showed more marked induction in plasma TNFα than WT after LPS injection, MKO PGC-1α mice had a reduced plasma TNFα and skeletal muscle TNFα mRNA response to LPS. In conclusion, the present findings suggest that PGC-1α enhances basal TNFα expression in skeletal muscle and indicate that PGC-1α does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1α seems however to impair the acute TNFα response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients.  相似文献   

16.
17.
We evaluated the role of reactive oxygen species (ROS) for the contraction induced increase in expression of PGC-1alpha, HKII and UCP3 mRNA. Rat skeletal muscle cells were subjected to acute or repeated electrostimulation in the presence and absence of antioxidants. Contraction of muscle cells lead to an increased H2O2 formation, as measured by oxidation of H2HFF. Acute contraction of the muscle cells lead to a transient increase in PGC-1alpha and UCP3 mRNA by 172 and 65%, respectively (p<0.05), whereas this increase was absent in the presence of antioxidants. Repeated contraction sessions induced a sustained elevation in PGC-1alpha and UCP3 mRNA and a transient increase in HKII (p<0.05) and this effect was not present with treatment of cells with either an antioxidant cocktail or with GPX+GSH. Incubation of cells for 10 days with ROS produced by xanthine oxidase/xanthine increased the level of PGC-1alpha, HKII and UCP3 mRNA by 175, 58 and 115%, respectively (p<0.05). A 10-day incubation of cells with antioxidants was found to have no effect on the basal mRNA content (p>0.05). The present data demonstrate that contraction of skeletal muscle cells leads to an enhanced formation of ROS and an elevation in PGC-1alpha, UCP3 and HKII mRNA content which is abolished in the presence of antioxidants, suggesting that ROS are of importance for the contraction induced increase in expression of these genes in skeletal muscle.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号