首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The direct examination of large, unbiased samples of young gene duplicates in their early stages of evolution is crucial to understanding the origin, divergence and preservation of new genes. Furthermore, comparative analysis of multiple genomes is necessary to determine whether patterns of gene duplication can be generalized across diverse lineages or are species-specific. Here we present results from an analysis comprising 68 duplication events in the Saccharomyces cerevisiae genome. We partition the yeast duplicates into ohnologs (generated by a whole-genome duplication) and non-ohnologs (from small-scale duplication events) to determine whether their disparate origins commit them to divergent evolutionary trajectories and genomic attributes.  相似文献   

2.

Background  

There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome.  相似文献   

3.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

4.

Background  

Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes.  相似文献   

5.

Background  

DNA-dependent RNA polymerase IV and V (Pol IV and V) are multi-subunit enzymes occurring in plants. The origin of Pol V, specific to angiosperms, from Pol IV, which is present in all land plants, is linked to the duplication of the gene encoding the largest subunit and the subsequent subneofunctionalization of the two paralogs (NRPD1 and NRPE1). Additional duplication of the second-largest subunit, NRPD2/NRPE2, has happened independently in at least some eudicot lineages, but its paralogs are often subject to concerted evolution and gene death and little is known about their evolution nor their affinity with Pol IV and Pol V.  相似文献   

6.

Background  

The rate of gene duplication is an important parameter in the study of evolution, but the influence of gene conversion and technical problems have confounded previous attempts to provide a satisfying estimate. We propose a new strategy to estimate the rate that involves separate quantification of the rates of two different mechanisms of gene duplication and subsequent combination of the two rates, based on their respective contributions to the overall gene duplication rate.  相似文献   

7.

Background  

The mechanism by which duplicate genes originate – whether by duplication of a whole genome or of a genomic segment – influences their genetic fates. To study events that trigger duplicate gene persistence after whole genome duplication in vertebrates, we have analyzed molecular evolution and expression of hundreds of persistent duplicate gene pairs in allopolyploid clawed frogs (Xenopus and Silurana). We collected comparative data that allowed us to tease apart the molecular events that occurred soon after duplication from those that occurred later on. We also quantified expression profile divergence of hundreds of paralogs during development and in different tissues.  相似文献   

8.

Background  

Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins.  相似文献   

9.

Background

Gene duplication is an important mechanism that can lead to the emergence of new functions during evolution. The impact of duplication on the mode of gene evolution has been the subject of several theoretical and empirical comparative-genomic studies. It has been shown that, shortly after the duplication, genes seem to experience a considerable relaxation of purifying selection.

Results

Here we demonstrate two opposite effects of gene duplication on evolutionary rates. Sequence comparisons between paralogs show that, in accord with previous observations, a substantial acceleration in the evolution of paralogs occurs after duplication, presumably due to relaxation of purifying selection. The effect of gene duplication on evolutionary rate was also assessed by sequence comparison between orthologs that have paralogs (duplicates) and those that do not (singletons). It is shown that, in eukaryotes, duplicates, on average, evolve significantly slower than singletons. Eukaryotic ortholog evolutionary rates for duplicates are also negatively correlated with the number of paralogs per gene and the strength of selection between paralogs. A tally of annotated gene functions shows that duplicates tend to be enriched for proteins with known functions, particularly those involved in signaling and related cellular processes; by contrast, singletons include an over-abundance of poorly characterized proteins.

Conclusions

These results suggest that whether or not a gene duplicate is retained by selection depends critically on the pre-existing functional utility of the protein encoded by the ancestral singleton. Duplicates of genes of a higher biological import, which are subject to strong functional constraints on the sequence, are retained relatively more often. Thus, the evolutionary trajectory of duplicated genes appears to be determined by two opposing trends, namely, the post-duplication rate acceleration and the generally slow evolutionary rate owing to the high level of functional constraints.
  相似文献   

10.
Yan J  Cai Z 《PloS one》2010,5(12):e14276

Background

The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable.

Methods and Findings

Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family.

Conclusions

The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family.  相似文献   

11.

Background  

The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh.  相似文献   

12.

Background  

Changes in protein evolutionary rates among lineages have been frequently observed during periods of notable phenotypic evolution. It is also known that, following gene duplication and loss, the protein evolutionary rates of genes involved in such events changed because of changes in functional constraints acting on the genes. However, in the evolution of closely related species, excluding the aforementioned situations, the frequency of changes in protein evolutionary rates is still not clear at the genome-wide level. Here we examine the constancy of protein evolutionary rates in the evolution of four closely related species of the Saccharomyces sensu stricto group (S. cerevisiae, S. paradoxus, S. mikatae and S. bayanus).  相似文献   

13.

Background  

While gene duplication is known to be one of the most common mechanisms of genome evolution, the fates of genes after duplication are still being debated. In particular, it is presently unknown whether most duplicate genes preserve (or subdivide) the functions of the parental gene or acquire new functions. One aspect of gene function, that is the expression profile in gene coexpression network, has been largely unexplored for duplicate genes.  相似文献   

14.

Background  

Gene duplication has been a fundamental process in the evolution of eukaryotic genomes. After duplication one copy (or both) can undergo divergence in sequence, expression pattern, and function. Two divergent copies of the ribosomal protein S13 gene (rps13) of chloroplast origin are found in the nucleus of the rosids Arabidopsis, Gossypium, and Glycine. One encodes chloroplast-imported RPS13 (nucp rps13), while the other encodes mitochondria-imported RPS13 (numit rps13). The rps13 gene has been lost from mitochondrial DNA (mt rps13) of many rosids.  相似文献   

15.

Background  

The origin of new genes and their contribution to functional novelty has been the subject of considerable interest. There has been much progress in understanding the mechanisms by which new genes originate. Here we examine a novel way that new gene structures could originate, namely through the evolution of new alternative splicing isoforms after gene duplication.  相似文献   

16.

Background  

Neuropeptides comprise the most diverse group of neuronal signaling molecules. They often occur as multiple sequence-related copies within single precursors (the prepropeptides). These multiple sequence-related copies have not arisen by gene duplication, and it is debated whether they are mutually redundant or serve specific functions. The fully sequenced genomes of 12 Drosophila species provide a unique opportunity to study the molecular evolution of neuropeptides.  相似文献   

17.

Background  

The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis-regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored.  相似文献   

18.

Background

The metzincins are a large gene superfamily of proteases characterized by the presence of a zinc protease domain, and include the ADAM, ADAMTS, BMP1/TLL, meprin and MMP genes. Metzincins are involved in the proteolysis of a wide variety of proteins, including those of the extracellular matrix. The metzincin gene superfamily comprises eighty proteins in the human genome and ninety-three in the mouse. When and how the level of complexity apparent in the vertebrate metzincin gene superfamily arose has not been determined in detail. Here we present a comprehensive analysis of vertebrate metzincins using genes from both Ciona intestinalis and Danio rerio to provide new insights into the complex evolution of this gene superfamily.

Results

We have identified 19 metzincin genes in the ciona genome and 83 in the zebrafish genome. Phylogenetic analyses reveal that the expansion of the metzincin gene superfamily in vertebrates has occurred predominantly by the simple duplication of pre-existing genes rather than by the appearance and subsequent expansion of new metzincin subtypes (the only example of which is the meprin gene family). Despite the number of zebrafish metzincin genes being relatively similar to that of tetrapods (e.g. man and mouse), the pattern of gene retention and loss within these lineages is markedly different. In addition, we have studied the evolution of the related TIMP gene family and identify a single ciona and four zebrafish TIMP genes.

Conclusion

The complexity seen in the vertebrate metzincin gene families was mainly acquired during vertebrate evolution. The metzincin gene repertoire in protostomes and invertebrate deuterostomes has remained relatively stable. The expanded metzincin gene repertoire of extant tetrapods, such as man, has resulted largely from duplication events associated with early vertebrate evolution, prior to the sarcopterygian-actinopterygian split. The teleost repertoire of metzincin genes in part parallels that of tetrapods but has been significantly modified, perhaps as a consequence of a teleost-specific duplication event.  相似文献   

19.

Background

The abundance of new genomic data provides the opportunity to map the location of gene duplication and loss events on a species phylogeny. The first methods for mapping gene duplications and losses were based on a parsimony criterion, finding the mapping that minimizes the number of duplication and loss events. Probabilistic modeling of gene duplication and loss is relatively new and has largely focused on birth-death processes.

Results

We introduce a new maximum likelihood model that estimates the speciation and gene duplication and loss events in a gene tree within a species tree with branch lengths. We also provide an, in practice, efficient algorithm that computes optimal evolutionary scenarios for this model. We implemented the algorithm in the program DrML and verified its performance with empirical and simulated data.

Conclusions

In test data sets, DrML finds optimal gene duplication and loss scenarios within minutes, even when the gene trees contain sequences from several hundred species. In many cases, these optimal scenarios differ from the lca-mapping that results from a parsimony gene tree reconciliation. Thus, DrML provides a new, practical statistical framework on which to study gene duplication.
  相似文献   

20.

Background  

The Azoospermia Factor c (AZFc) region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ) gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL) gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号