首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In order to study the response of a poorly differentiated tumor to nutritional manipulation, the Yoshida ascites hepatoma (AH 130) was grown in rats fed an essential fatty acid (EFA)-deficient diet and in rats fed a control diet. Hepatomas, livers, and blood plasma from host rats and normal rats were studied as to the effects of EFA deficiency on the lipid composition. Normal rats fed an EFA-deficient diet showed an increased concentration of triglycerides and cholesteryl esters in the liver and a reduced level of total phospholipids in plasma. Host rats fed the EFA-deficient diet showed a lower concentration of triglycerides in the liver when compared with the host rats fed a control diet. In addition, EFA-deficient host rats had reduced levels of plasma free fatty acids and triglycerides. These latter were markedly high in host rats under normal dietetic conditions. As compared to the livers of either host rats or normal rats fed the control diet, the Yoshida hepatoma cells had a lower content of total phospholipids and free fatty acids as well as a higher level of free cholesterol; they also showed a typical fatty acid pattern in their phospholipids. The main characteristics of this pattern were a high content of oleic and palmitoleic acids and a low level of C20 and C22 polyunsaturated fatty acids. Exposure of Yoshida hepatoma cells to an EFA-deficient environment resulted in a decrease in the concentration of total phospholipids and free fatty acids and in changes in the fatty acid composition similar to those observed in the livers of normal and host rats. These changes suggest that, under the experimental conditions used, the Yoshida hepatoma cells are responsive to EFA deficiency.  相似文献   

2.
1. Groups of intact male and female rats and castrated rats injected with oestradiol or testosterone were given a diet containing hydrogenated coconut oil for 9 weeks, and at intervals the amounts and fatty acid compositions of the carcass and liver lipids were determined. 2. Male rats grew faster and larger, and exhibited typical external essential fatty acid deficiency symptoms sooner than did females. Testosterone-treated castrated male rats were similar to males, and oestradiol-injected castrated male rats resembled females. 3. Intact females maintained a higher linoleic acid concentration in their carcass than did males. Total amounts of carcass linoleic acid remained similar for all groups, only 200mg. being removed in 9 weeks regardless of body size. 4. The amounts of total cholesteryl esters were independent of liver size. They were higher in males and testosterone-treated castrated male rats than in females and oestrogen-treated castrated male rats. 5. Phospholipids represented about 80% of the liver lipids. The total amounts of the phospholipid linoleic acid and arachidonic acid were similar for all groups regardless of liver size, and were not affected appreciably by the deficiency. Females and oestrogen-treated castrated male rats maintained a higher proportion of phospholipid arachidonic acid for longer periods than did their male counterparts. Both the total amounts and the proportions of eicosatrienoic acid and palmitic acid were higher in males than in females. 6. Supplementation of the essential fatty acid-deficient diet with linoleic acid caused a rapid loss of eicosatrienoic acid and palmitic acid with a concomitant increase in stearic acid and arachidonic acid. 7. There were no obvious differences in the way that the essential fatty acids were metabolized or mobilized from adipose tissue of male or female rats during essential fatty acid deficiency. 8. The results indicated that the greater growth rate of the male rats caused them to require and synthesize more phospholipids than did the females. In the absence of adequate amounts of arachidonic acid, eicosatrienoic acid was substituted into the additional phospholipid. The earlier symptoms of essential fatty acid deficiency in the male rat could therefore be ascribed to the higher tissue concentrations of this unnatural phospholipid and its inability to perform the normal metabolic functions of phospholipids.  相似文献   

3.
The effects of copper deficiency on the fatty acid composition of mitochondrial and microsomal phospholipids in rat liver were studied. Copper deficiency was induced by a milk powder diet. To evaluate the effect of the milk diet on the fatty acid pattern of mitochondrial and microsomal phospholipids, one group of rats was fed Cusupplemented powdered milk. A decrease in the relative proportion of linoleic acid and an increase in the level of oleic and docosahexaenoic acids in membrane phospholipids were found in this group. However, no changes in the fatty acid pattern characteristic of essential fatty acid deficiency were observed. Dietary copper deficiency produced a significant decrease in the relative amounts of linoleic and arachidonic acids, as well as an increase in the docosahexaenoic acid content in both mitochondrial and microsomal membranes compared to the nondeficient controls. The disproportionate quantities of polyunsaturated fatty acids are discussed with a view to the disturbances of membrane function in copper deficiency.  相似文献   

4.
Inflammatory response has been assessed in riboflavin or pyridoxine deficient rats. Edema was increased by 54% in pyridoxine deficiency as compared to weight-matched control rats. Food restriction per se reduced the volume of edema by 63%. In pyridoxine deficiency, concentrations of thiobarbituric acid reactive substances (which indicate the extent of lipid peroxidation) increase by 30 and 43% respectively in the edematous tissues of the paw as well as in the wounded skin. Both these parameters were not affected by riboflavin deficiency. Activities of NADPH oxidase and superoxide dismutase in elicited leukocytes from peritoneal cavity were reduced by 54 and 52%, respectively, in riboflavin deficiency but were unaltered in pyridoxine deficiency. Superoxide level and acid phosphatase activity were not influenced by either of the deficiencies, whereas hydrogen peroxide level was increased by 48% in riboflavin deficiency. Food restriction did not affect leukocyte enzymes or the levels of reduced oxygen species. The data suggest that inflammation is enhanced in pyridoxine deficiency but not in riboflavin deficiency.  相似文献   

5.
Restricting food intake to a level below that consumed voluntarily (85%, 70% and 50% of the ad libitum energy intake for 3 or 30 days) and re-feeding ad libitum for 48 h results in an increase of malic enzyme (ME) gene expression in rat white adipose tissue. The increase of ME gene expression was much more pronounced in rats maintained on restricted diet for 30 days than for 3 days. The changes in ME gene expression resembled the changes in the content of SREBP-1 in white adipose tissue. A similar increase of serum insulin concentration was observed in all groups at different degrees of caloric restriction and refed ad libitum for 48 h. Caloric restriction and refeeding caused on increase of ME activity also in brown adipose tissue (BAT) and liver. However, in liver a significant increase of ME activity was found only in rats maintained on the restricted diet for 30 days. No significant changes after caloric restriction and refeeding were found in heart, skeletal muscle, kidney cortex, and brain. These data indicate that the increase of ME gene expression after caloric restriction/refeeding occurs only in lipogenic tissues. Thus, one can conclude that caloric restriction/refeeding increases the enzymatic capacity for fatty acid biosynthesis.  相似文献   

6.
The maintenance of normal body weight either through dietary modification or being habitually more physically active is associated with reduced incidence of nonalcoholic fatty liver disease (NAFLD). However, the means by which weight gain is prevented and potential mechanisms activated remain largely unstudied. Here, we sought to determine the effects of obesity prevention by daily exercise vs. caloric restriction on NAFLD in the hyperphagic, Otsuka Long-Evans Tokushima Fatty (OLETF) rat. At 4 wk of age, male OLETF rats (n = 7-8/group) were randomized to groups of ad libitum fed, sedentary (OLETF-SED), voluntary wheel running exercise (OLETF-EX), or caloric restriction (OLETF-CR; 70% of SED) until 40 wk of age. Nonhyperphagic, control strain Long-Evans Tokushima Otsuka (LETO) rats were kept in sedentary cage conditions for the duration of the study (LETO-SED). Both daily exercise and caloric restriction prevented obesity and the development of type 2 diabetes observed in the OLETF-SED rats, with glucose tolerance during a glucose tolerance test improved to a greater extent in the OLETF-EX animals (30-50% lower glucose and insulin areas under the curve, P < 0.05). Both daily exercise and caloric restriction also prevented excess hepatic triglyceride and diacylglycerol accumulation (P < 0.001), hepatocyte ballooning and nuclear displacement, and the increased perivenular fibrosis and collagen deposition that occurred in the obese OLETF-SED animals. However, despite similar hepatic phenotypes, OLETF-EX rats also exhibited increased hepatic mitochondrial fatty acid oxidation, enhanced oxidative enzyme function and protein content, and further suppression of hepatic de novo lipogenesis proteins compared with OLETF-CR. Prevention of obesity by either daily exercise or caloric restriction attenuates NAFLD development in OLETF rats. However, daily exercise may offer additional health benefits on glucose homeostasis and hepatic mitochondrial function compared with restricted diet alone.  相似文献   

7.
Feeding male rats a high cal% partially hydrogenated fish oil diet induced morphological and biochemical changes in hepatocytes at the mitochondrial and peroxisomal level. At the mitochondrial level, formation of megamitochondria was related to the development of an essential fatty acid deficiency, as measured by a high 20:3/20:4 fatty acid ratio. These mitochondrial changes were fully prevented by adding linoleic acid to the partially hydrogenated fish oil diet. The megamitochondria revealed a normal specific content of respiratory chain pigments, normal specific respiratory rates and a normal energy coupling. At the peroxisomal level, feeding of the partially hydrogenated fish oil diet caused a considerable proliferation, which was unrelated to essential fatty acid deficiency. The total number of peroxisomes increased 1.9-fold, and 2.6-fold in the presence of added linoleic acid. Essential fatty acid deficiency seemed to result in an inhibition of peroxisomal biogenesis. It was concluded that the induction of megamitochondria by partially hydrogenated fish oil was fully attributable to essential fatty acid deficiency, whereas peroxisomal proliferation must be attributed to other factors in the diet.  相似文献   

8.
The use of lipases in the modification of lipids has grown significantly in recent years. This increased interest is mainly due to the ability of these enzymes to catalyze the production of lipids with specific distributions of fatty acids that better fit the current needs of consumers, who are looking for healthier foods that are manufactured with the highest quality. The successful use of lipases to obtain modified lipids with low caloric content, high concentrations of n?3 fatty acids or high amounts of phenolic compounds demonstrate the great potential of these enzymes. The lipase-catalyzed production of lipids with reduced caloric content is made possible by the addition of a medium or a very long chain fatty acid to the triacylglyceride. Diacylglicerols with low caloric content can also be produced using lipases. Due to the deficiency of n?3 fatty acids in the current diet, strategies for the lipase-mediated incorporation of these acids in the TAG have shown promising results. Finally, studies have successfully used lipases for the incorporation of phenolic compounds in the lipid structure, which produce compounds with improved oxidative stability and more beneficial health effects.  相似文献   

9.
The beneficial effects obtained with dehydroisoandrosterone (DHA) feeding in the treatment of murine systemic lupus erythematosus are similar to those obtained with caloric restriction or with dietary manipulation of essential fatty acid availability. In this study, the fatty acid composition of selected tissues was examined in NZB/W F1 mice fed a diet containing 0.4% DHA. The effect of the DHA diet on liver composition and the activity of key hepatic enzymes involved in fatty acid synthesis and glucose metabolism was also investigated. The content of the essential fatty acid, arachidonate, was decreased in plasma cholesteryl esters and liver and kidney phospholipids in mice fed the DHA diet, yet no significant decrease in arachidonate content was observed in plasma phospholipid. The most striking change in both plasma and liver phospholipid was an increase in palmitic acid and a decrease in stearic acid, which could result from a decreased ability for fatty acid elongation. The liver mass was dramatically increased in the mice fed DHA, primarily from parenchymal cell hypertrophy, and contained little lipid. Significant changes in the activities of malic enzyme, glucose-6-phosphate dehydrogenase and pyruvate kinase, similar to those changes which occur with fasting, were observed during the initial adaptation to the DHA diet. The pyruvate kinase activity remained low, suggesting a decrease in liver glycolysis. These results are consistent with the concept that diets containing DHA result in an altered metabolism with a decreased dependence on carbohydrate metabolism and an increased metabolism of lipids.  相似文献   

10.
We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.  相似文献   

11.
The tufted apple budmoth, Platynota idaeusalis (Walker), was reared non-axenically for two successive generations on a casein-based semisynthetic diet. The qualitative essential fatty acid requirement for growth, development and normal pupal-adult ecdysis was studied using the non-axenic casein-based semisynthetic diets with and without various 99% pure fatty acids. Linoleic or linolenic acids caused accelerated larval development; linoleic, linolenic and arachidonic acids showed similar activity in body weight gain and survival to pupal-adult ecdysis. Linoleic or linolenic acids were active in alleviating wing deformities; arachidonic acid was partially active in alleviating wing deformities at the one dietary concentration evaluated. Activity of arachidonic acid as an essential fatty acid for P. idaeusalis is unique among insects, except for mosquitoes. The essential fatty acid deficiency syndrome of the adult, resulting from the larvae feeding on fat-deficient diets, was greatly reduced when larvae were fed on a diet adequate in essential fatty acid during either their early or late development.  相似文献   

12.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

13.
Severe essential fatty acid deficiency (EFAD) was induced by feeding weanling rats a diet free of essential fatty acids 8 months after weaning. The fatty acid compositions of phospholipids and glycosphingolipids in peripheral nerve myelin were compared in rats with and without EFAD. With the deficient diet, 20:3ω9 was found in the major myelin phospholipids. The level of 18:1 was increased and the levels of 18:2ω6, 20:4ω6, and 22:4ω6 were decreased. Both sphingomyelin and cerebroside showed higher proportion of 24:1 and lower proportions of 24:0 in EFA-deficient rats than in control rats. The fatty acid chain elongating system in myelin cerebroside was also depressed by EFAD. A two- to sevenfold increase of the ratio 20:4ω6 to 20:3ω6 was found in myelin phospholipids of regenerated nerve from rats fed control diet. However, this ratio was suppressed by EFAD diet. The biochemical index (20:3ω9/20:4ω6) for EFAD was not affected by crush injury. These results suggest that dietary EFAD in postweaning rats can induce fatty acid alterations in peripheral nerve myelin without resulting in detectable changes in function or structure and that myelin lipids may be sequestered and reused during nerve degeneration and regeneration.  相似文献   

14.
Fructose and copper have been shown independently to influence long chain fatty acid metabolism. Since fructose feeding exacerbates copper deficiency, their possible interaction with respect to tissue long chain fatty acid and lipid composition was studied. Weanling male Sprague-Dawley rats were given diets containing 0.6 or 6 mg/kg copper. The carbohydrate source (627 g/kg) was either fructose or corn starch. After 3 wk, fatty acid profiles and total lipids in heart and liver were analyzed. Copper-deficient rats fed fructose had more severe signs of copper deficiency than those fed starch, according to heart/body wt ratio, hematocrit, and liver copper content. The fatty acid composition of heart and liver triacylglycerol was significantly different between groups, but the changes did not correlate with the severity of copper deficiency. In heart, phosphatidylinositol and phosphatidylserine, arachidonic acid and docosapentaenoic acid (n-6) were increased 193 and 217%, respectively, p<0.05) in rats given the copper-deficient diet containing fructose. Changes in the long chain fatty acids in heart phospholipids may be related to the higher mortality commonly observed in rats fed a copper-deficient diet containing fructose.  相似文献   

15.
Intestinal absorption of most nutrients is enhanced in diabetic rats. We wished to test the hypothesis that manipulation of dietary fatty acids will modify enhanced uptake of glucose in rats with established streptozotocin-diabetes. Chow-fed control rats or animals with one week of streptozotocin-diabetes were continued on chow or were fed ad libitum for three weeks with semisynthetic isocaloric diets containing a high content of either essential polyunsaturated or non-essential saturated fatty acids. The jejunal and ileal in vitro uptake of varying concentrations of glucose was much higher in diabetic than control rats fed chow or the saturated fatty acid diet. In contrast, the enhanced uptake of this sugar was reduced or normalized in diabetic rats fed the polyunsaturated fatty acid diet. Feeding the polyunsaturated fatty acid diet was associated with increased brush-border membrane activity of alkaline phosphatase in diabetic jejunum and ileum, but neither the saturated fatty acid diet nor the polyunsaturated fatty acid diet altered brush-border membrane cholesterol or phospholipids in control or in diabetic rats. Mucosal surface area was similar in diabetic rats fed the saturated fatty acid diet or the polyunsaturated fatty acid diet. Thus, (1) feeding the polyunsaturated fatty acid diet diminishes the enhanced jejunal and ileal uptake of glucose in diabetic rats, and (2) the influence of the polyunsaturated fatty acid diet on uptake in diabetic rats was not explained by alterations in intestinal morphology or brush-border membrane content of cholesterol or phospholipids. This study suggests that manipulation of dietary lipids may play a role in the normalization of the enhanced intestinal glucose uptake in rats with established diabetes.  相似文献   

16.
The effect of partial threonine deficiency on protein and calorie utilization and its relation to liver fat accumulation were studied. The retained nitrogen of the threonine deficient group dcreased but the ratio of the caloric intake to the retained nitrogen increased.

The liver fat content of rats fed on the threonine deficient diet decreased with each decrease in their caloric intake.

Present results support the earlier concept of the authors that the fatty liver caused by feeding rats such an amino acid imbalanced diet is due to a disproportionately high intake of calories in relation to the intake of balanced protein.  相似文献   

17.
We investigated the fatty acid compositions of phospholipids in Drosophila melanogaster lines showing rapid (CR), intermediate (CTL), or slow (CS) recovery from chill coma, which were established by artificial selection or by free recombination without selection. Compared to CTL, CS showed a low composition of dienoic acids and a small number of double bonds in the fatty acids. The ratio of unsaturated fatty acids and saturated fatty acids (UFAs/SFAs) was significantly lower in CS than in CTL. CR had higher monoenoic acid composition and lower dienoic acid composition than CTL. In addition, the amount of SFAs was lower and therefore the UFAs/SFAs ratio considerably higher in CR than in CTL. These changes in phospholipid fatty acids probably contributed to losing and maintaining the homeoviscosity of the cellular membranes in CS and CR, respectively, at low temperature and therefore produced their distinct phenotypes in recovery from chill coma.  相似文献   

18.
Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to survival until well-balanced amino acid sources are found.  相似文献   

19.
The present study was conducted to investigate the effect of zinc deficiency on fatty acid desaturation in rats fed two different types of dietary fat, a mixture of coconut oil and safflower oil (7∶1, w/w, “coconut oil diet”) or linseed oil (“linseed oil diet”). In order to ensure an adequate food intake, all rats were force-fed by gastric tube. Zinc deficiency caused statistical significant reducion of Δ9-desaturase activity in liver microsomes of rats fed coconut oil diet and tendencial reduction (p<0.15) in rats fed linseed oil diet compared with control rats fed diets with the same type of fat. In agreement with this effect, zinc deficiency in the rats fed both types of dietary fat increased the ratio between total saturated and total monounsaturated fatty in liver phospholipids and liver microsomes. Zinc deficient rats on the coconut oil diet had unchanged Δ6-desaturase activity with linoleic acid as substrate and lowered activity with α-linolenic acid as substrate. In contrast, zinc deficient rats on the linseed oil diet had increased Δ6-desaturase activity with linoleic acid as substrate and unchanged activity with α-linolenic acid. Because linoleic acid is the main substrate for Δ6-desaturase in the rats fed coconut oil diet, and α-linolenic acid is the main substrate in the rats fed linseed oil diet, it is concluded that in vivo Δ6-desaturation was not changed by zinc deficiency in the rats fed both types of dietary fat. Activity of Δ5-desaturase was also not changed by zinc deficiency in the rats fed both dietary fats. Levels of fatty acids in liver phospholipids and microsomes derived by Δ4-, Δ5-, and Δ6-desaturation were not consistently changed by zinc deficiency in the rats fed both types of dietary fat. Thus, the enzyme studies and also fatty acid composition data of liver phospholipids and microsomes indicate that zinc deficiency does not considerably disturb desaturation of linoleic and α-linolenic acid. Therefore, it is suggested that similarities between deficiencies of zinc and essential fatty acids described in literature are not due to disturbed desaturation of linoleic acid in zinc deficiency. The present study also indicates that zinc deficiency enhances incorporation of eicosapentaenoic acid into phosphatidylcholine of rats fed diets with large amounts ofn-3 polyunsaturated fatty acids.  相似文献   

20.
This study investigated the biological effects of various dietary essential fatty acids levels to sea scallop larvae, Placopecten magellanicus. Scallop larvae were fed three diets from D-veliger to settlement. Diet A consisted of Isochrysis sp. and Pavlova lutheri, diet B was a mix of Isochrysis sp. and Chaetoceros muelleri and diet C consisted of the same two species, but C. muelleri was grown under silicate deprivation to alter the fatty acid composition. Pediveligers (28 days old) were sampled prior to settlement for fatty acid analysis, growth measurement and survival assessment. Survival and settlement success were measured at the end of the experiment (day 40). Our results show that feeding regime greatly influenced larval size, settlement and fatty acid composition. Diet A was severely deficient in arachidonic acid (20:4n-6, AA), leading to the poorest larval growth, survival and lipid content. Nevertheless, larvae fed diet A selectively accumulate AA by a factor three compared to the dietary amount. Shell size of 28-day-old larvae was positively correlated with AA content and negatively correlated with eicosapentaenoic acid (20:5n-3, EPA)-AA ratio, thus suggesting that these two variables are of major interest for the optimisation of larval growth in sea scallops. Finally, larvae fed diet C displayed 20% higher shell size at day 28 than larvae fed diet A and B, likely in relation to the dietary amount of saturated fatty acid (SFA). However, the moderate survival and settlement success of these groups of larvae might be associated with a relative deficiency in docosahexaenoic acid (22:6n-3, DHA). This study underlines that the overall balance between polyunsaturated fatty acid (PUFA) needs to be considered to adequately fed sea scallop larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号