首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
Polyethylene glycol was added to the rooting medium ofmicropropagated grape shoots to induce water stress. At the end of the rooting stage, plantlets treated with 2% polyethylene glycol were compared with untreated control plantlets and greenhouse-grown plants. Leaves of treated plantlets had the highest deposition of epicuticular wax, followed by those of the greenhouse and control. Stomatal index did not vary among treatments. However, differences in leaf epidermal cell configuration were observed among treatments. The morphological changes of treated plantlets, including substantial deposition of epicuticular wax and modified leaf surface anatomy were associated with increasedex vitro survival after four weeks in the greenhouse.  相似文献   

2.
Plantlets derived from shoot-tips of seedlings from five cultivars of date palm, Phoenix dactylifera L., were subjected to polyethylene glycol in liquid medium. Comparisons of water loss of detached leaves among in vitro-grown, polyethylene glycol-treated and greenhouse-grown plants showed significant differences with treatment for all cultivars studied. For each treatment, significant differences were also found among cultivars. The common result was that the percent of moisture loss of non-treated in vitro-grown plantlets was almost twice that of greenhouse-grown plants. Polyethylene glycol-treated plantlets showed a water loss of approximately 27%, similar to that of greenhouse plants as compared to an average of 40% in control plants. This demonstrates the possibility of using polyethylene glycol as an osmoticum for in vitro acclimatization of plantlets prior to transfer to soil.Abbreviations EW epicuticular wax - MS Murashige and Skoog (1962) medium - NAA naphthalene acetic acid - PEG polyethylene glycol - PPFD photosynthetic photon flux density  相似文献   

3.
Artichoke (Cynara scolymus L.) leaf size and shape, glandular and covering trichomes, stomatal density, stomata shape, pore area and epicuticular waxes during micropropagation stages were studied by scanning electron microscopy (SEM) and morphometric analysis with the aim to improve the survival rate after transfer to greenhouse conditions. Leaves from in vitro shoots at the proliferation stage showed a spatular shape, ring-shaped stomata, a large number of glandular trichomes and juvenile covering hairs, but failed to show any epicuticular waxes. Leaves from in vitro plants at the root elongation stage showed a lanceolated elliptic shape with a serrated border, elliptical stomata, decreased pore area percentage, stomatal density, and mature covering trichomes. One week after transfer to ex vitro conditions, epicuticular waxes appeared on the leaf surface and stomata and pore area were smaller as compared to in vitro plants. Artichoke acclimatization may be improved by hormonal stimulation of root development, since useful morphological changes on leaves occurred during root elongation.  相似文献   

4.
Wax deposits on leaf surfaces ofin vitro-grown plantlets,in vitro plantlets treated with polyethylene glycol and greenhouse-grown seedlings from five cultivars of date palm (Phoenix dactylifera L.) were extracted and quantified. Significant variations among treatments and cultivars were obtained. Greenhouse-grown plants had the greatest wax deposits followed by the acclimatized plantlets.In vitro plantlets had an average of 15% of the wax of greenhouse plants. Cultivar and plant age differences had a significant effect on the quantity of wax deposits. Greenhouse seedlings of Majhool, Deglet Noor and Khadraoui (cultivars grown under irrigation) had less wax accumulation than Zahidi and Sayer, dryland cultivars.The increase in wax deposition as a result of polyethylene glycol treatment, explains in part, the decreased water loss observed in acclimatized plantlets when transferredex vitro. Abbreviations EW epicuticular wax - NAA naphthalene acetic acid - PEG polyethylene glycol  相似文献   

5.
A deviation from usually found characteristics of stomata in Wrightia tomentosa was noted during in vitro propagation. Increase in stomatal frequency in leaves of plants grown in vitro was observed with 29.4 % malformed stomata. The stomata were spherical, wide open, did not close in detached leaves even after 3 h. The leaves exhibited 93.4 % total water loss during 3-h period. Stomatal frequency, percentage of malformed stomata and rate of water loss declined in subsequent rooting phase. Nevertheless, for high survival rate plantlets were hardened under gradually decreasing air humidity either in partially opened glass bottles containing Soilrite™ moistened with 1/4 Murashige and Skoog nutrients or in pots covered with polyethylene bags. The stomatal characteristics of hardened plants were comparable to seedlings. Survival rate was more than 95 %.  相似文献   

6.
Summary Plant survival ex vitro requires functioning stomata, adequate cuticular wax composition and deposition, and normal morphological development. Light intensity, CO2 and relative humidity were altered inside an acoustic window mist reactor to study their effects on carnation (Dianthus caryophyllus) growth, stomata development, hyperhydration and epicuticular wax content. Increasing the light intensity from 65 to 145 μmol m−2 s−1 and enrichment of the gas phase with CO2 (1350 ppm) reduced the number of hyperhydrated plants from 75 to 25% and increased the percentage dry weight of normal (healthy) plants from 17 to 25%. Lowering the relative humidity (≈70% RH) surrounding the plants during the mist-off phase for the last 2 wk of culture reduced the number of hyperhydrated plants from 70 to 9% and also increased the percentage of dry weight of normal plants from 16 to 25%. The stomata on plants grown in conditions of high light or low humidity had smaller apertures and appeared sunken when compared to stomata from plants grown in low light and high relative humidity. The epicuticular wax profiles of plants from the greenhouse or Magenta boxes showed a distinct shift in wax compounds with developmental age, plant type (hyperhydrated or normal), and type of box that was used (vented or not). In addition, very different wax profiles were observed from plants grown in reactors with altered CO2 and light intensities.  相似文献   

7.
Leaf surfaces of non-tissue-cultured, vitrified and non-vitrified plantlets of Gypsophila paniculata (Babies Breath) were examined using an environmental scanning electron microscope. Non-tissue-cultured plants had a complete epidermal surface, recessed stomata and wax present on the leaf surface. The surface of tissue-cultured plantlets appeared similar to non-tissue-cultured plants excepting stomata were slightly protruding and less wax appeared to be present. In both non-tissue-cultured and tissue-cultured plants stomata were found both opened and closed and were observed closing. In contrast vitrified plantlets had abnormal, malformed stomata which appeared non-functional. The ventral surfaces of leaves seemed more normal than the dorsal, this may be due to the former receiving more light. Additionally, discontinuities were found in the epidermis. Often epidermal holes were found in association with stomatal apertures. It is suggested that the main cause of desiccation of vitrified G. paniculata plantlets ex vitro is due to loss of water from the discontinuity in epidermis and not because of non-functional stomata. Liquid water could be seen through the epidermal holes indicating that at least some of the extra water in vitrified plantlets is contained in the intercellular spaces.Abbreviations ESEM Environmental scanning election microscope - IAA Indole acetic acid - NTC Non-tissue-cultured - TC Tissue-cultured - V vitrified  相似文献   

8.
The anatomic and functional leaf characteristics related to photosynthetic performance of Castanea sativa growing in vitro and in nursery were compared. The irradiance saturated photosynthesis in in vitro grown plantlets was significantly lower compared to nursery plants (65 vs. 722 μmol m−2 s−1). The maximum photosynthetic rate (PNmax) was 4.0 and 10.0 μmol(CO2) m−2 s−1 in in vitro microshoots and nursery plant leaves, respectively. Carboxylation efficiency (CE) and electron transport rate (ETR) were three-folds higher in nursery plants than in microshoots. The nonphotochemical quenching (NPQ) was saturated at 80 μmol m−2 s−1 in microshoots suggesting limited photoprotection by thermal dissipation. The microshoots had wide open, spherical stomata and higher stomatal density than nursery plants and they had almost no epicuticular wax. Consequently, the microshoots had high stomatal conductance and high transpiration rate. These anatomic and functional leaf characteristics are likely major causes of the low survival rates of plantlets after ex vitro transfer.  相似文献   

9.
Experiments were designed to assess the capacity of an in vitro cultured CAM plant to control water loss and to examine the response of their stomata to various factors. Detached leaves of micropropagated Agave tequilana plants lost water at similar rates as did field-grown plantlets when dehydrated in air. This was consistent with the fact that stomata from micropropagated plants show similar morphology than field-grown plantlets. In addition, stomata from micropropagated plants responded to various factors in a manner similar to those from field-grown plantlets. It appears that in vitro culture does not affect the capacity of leaves to control water loss nor does it alters the nocturnal stomatal opening of this CAM plant.  相似文献   

10.
Summary Variants from seed-propagated Lisianthus [Eustoma grandiflorum (Raf.) Shinn] were shoot-tip cultured to observe the effects of cytokinins, auxins and activated charcoal on organogenesis and anatomical characteristics. N6-Benzyladenine (BA) and kinetin at high concentrations (13.32–22.2 and 13.94–23.23 μM) resulted in good shoot formation but high percentages of hyperhydric shoots. Increased indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations favored root formation, while increased naphthaleneacetic acid concentration adversely affected root formation. Both shoot and root development were suppressed by activated charcoal. The highest percentage of regeneration and the largest number of glaucous shoots with an average of 15 shoots per explant after 4 wk of culture were obtained when the shoot tips were cultured on MS (Murashige and Skoog, 1962) medium supplemented with 4.44 μM BA and 1.47–4.92 μMIAA and IBA. In vitro-grown leaves had a higher number of stomata than field-grown leaves but the length and diameter of stomata showed no significant difference between the two types. Field-grown leaves had well-developed epicuticular wax layers. which were not observed on hyperhydric leaves. Hyperthydric plantlets could not survive when transplanted to soil, whereas glaucous plantlets survived in more than 80% of cases. Variation in soil type resulted in a slight difference in plantlet survival. Based on the results of our experiment, this protocol should be useful for the rapid micropropagation of lisianthus.  相似文献   

11.
Summary This study reports an improved protocol for in vitro-shoot multiplication and ex vitro acclimation of Bupleurum kaoi, an endangered medicinal herb. Nodal segments were cultured in half-strength Murashige and Skoog (MS) basal medium supplemented with different concentrations of benzyladenine (BA) and kinetin. The presence of 0.25 mg l−1 BA induced the highest number of shoots per explant after 8 wk of culture. Although BA was more effective than kinetin on shool multiplication, it induced hyperhydric shoots at all concentrations tested. The use of dispense paper (DP) instead of aluminum foil (AF) for container closure was found to reduce hyperhydricity and improve ex vitro acclimation. The best survival rate (61%) was obtained when plantlets were grown in MS basal medium containing 0.5 mg l−1 indole-3-butyric acid and 0.1–0.2 mg l−1 α-naphthaleneacetic acid using DP as container closure. Leaves of the plant treated with AF6 (two layers of AF as container closure and 6 wk of incubation) lacked epicuticular wax and possessed larger stomata, higher stomata density, and fewer functional stomata compared to those of plants treated with AF2+DP4 (two layers of AF for 2 wk, then replaced AF by three layers of DP for 4wk) and ex vitro-acclimated plantlets.  相似文献   

12.
Polyethylene glycol was used to induce water stress of micropropagated Valiant grape. Reduced growth and slow rooting were observed in treated plantlets with 2, 4 and 6% polyethylene glycol as compared to control plantlets with no polyethylene glycol in the rooting medium. At high concentrations of 4 and 6%, leaves exhibited wilting and necrosis. At the 2% level, plantlets recovered and grew satisfactorily. Detached leaves of treated plantlets with 2% polyethylene glycol lost less water than controls when exposed to low humidity for 4 hours. Leaf anatomy of plantlets treated with 2% polyethylene glycol, control (in vitro plantlets) and greenhouse-grown plants were compared under light microscopy. Leaves from control plantlets contained larger mesophyll cells, lacked normal palisade layer formation, had greater intercellular pore spaces and fewer chloroplasts. Leaves from polyethylene glycol-treated plantlets, however, had smaller mesophyll cells, a more defined palisade layer, reduced intercellular pore space and the greatest number of chloroplasts. These results suggest that an osmoticum such as polyethylene glycol may be used to induce more normal leaf anatomy and reduced water loss in micropropagated Valiant grapes.Abbreviations BA 6-benzylaminopurine - FAA formalin-acetol-alcohol - MS Murashige & Skoog (1962) medium - MW molecular weight - NAA napthaleneacetic acid - PEG polyethylene glycol - TBA tertiary butyl alcohol  相似文献   

13.
Little is known about physiological changes that occur with micropropagated chile ancho pepper (Capsicum annuum L. cv. San Luis) plantlets during acclimatization. Plantlets were transferred to ex vitro conditions to study selected physiological changes and growth performance during acclimatization and post-acclimatization. The physiology of the plantlets was characterized by measuring leaf gas exchange and water status. Plant growth was determined by assessing plant height, leaf number, total leaf area, relative growth rate (RGR), and leaf, root, and stem dry matter (DM). Chile pepper plantlets became acclimatized within 6 days after transplantation. During this period, physiological adjustments occurred, which were critical for plantlet survival. After initial ex vitro transplanting, plantlets experienced water deficit [leaf wilting and reduced relative water content (RWC)], which corresponded with reduced stomatal conductance (g s) and transpiration (E), and an increase in stomatal resistance (r s). Thus, leaf stomata that developed in vitro were functional ex vitro. Because of this stomatal control, plantlets minimized transplant shock, recovered and survived. Prior to transplanting, plantlets were photomixotrophic, as indicated by low photosynthetic rates (A). During acclimatization, RWC, g s, E, and A were significantly lower two days after transplanting. However, within 6 days after transplanting, plantlets recovered and became photoautotrophic – attaining high A, g s, and E. Water use efficiency was initially low during the first days after transplanting, but increased dramatically at the end of the acclimatization period in part due to increased A. The stabilization and improvement of plantlet water status and gas exchange during acclimatization and post-acclimatization closely correlated with increased plantlet growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
  • Crinum malabaricum Lekhak & Yadav is a recently discovered and critically endangered aquatic bulbous plant of the family Amaryllidaceae. It gained attention as a wild source of the acetylcholinesterase inhibiting alkaloid ‘galanthamine’ used to treat Alzheimer and Parkinson diseases. The bulbs of this plant contain the highest amount of galanthamine among Crinum species.
  • In vitro regeneration systems were developed to produce quality uniform plantlets of C. malabaricum. Bright field light microscopy was used to analyse micro-morpho-anatomical developments taking place in the leaves and roots during in vitro, ex vitro and in vivo transitions of plantlets.
  • Leaves and roots of plants raised in vitro possessed a higher degree of microscopic structural anomalies, such as underdeveloped epicuticular wax deposition, immature and non-functional stomata, more aquiferous parenchyma with a reduced lumen. Roots developed in vitro were characterized by extremely large, uneven cortical cells and reduced intercellular spaces. The vascular tissues were under-developed and only primary vascular tissues were observed. As a result of ex vitro acclimation, there was a significant acceleration in the improvement of tissue systems in leaves and roots. Such plantlets can tolerate elevated temperatures and light under in vivo conditions.
  • Thus, the microscopic evaluation of the structural trajectory in different stages of plantlet development provides an understanding of the acclimation process and structural adaptations, which could help enhance survival of in vitro raised plantlets under ex vitro and in vivo conditions.
  相似文献   

15.
《Acta Oecologica》2007,31(1):93-101
This study investigated the seasonal modification of wax deposition, and the impact of epicuticular wax on gas-exchange as well as photoinhibition in Leucadendron lanigerum, a species from the Proteaceae family with wax-covered leaf surfaces and the stomata also partially occluded by wax. The results of this study demonstrated that the deposition of epicuticular wax in L. lanigerum is dependent on the age of the leaf as well as the season, and generation and regeneration of wax occur mostly in spring while transformation and also degeneration of wax crystals occur in winter. Epicuticular waxes decreased cuticular water loss, but had little impact on leaf reflectance. The temperature of leaves without wax was lower than that of wax-covered leaves, indicating that the rate of transpiration impacted more on leaf temperature than reflectance of light in the PAR range in L. lanigerum. The wax coverage at the entrance of stomata in L. lanigerum increased resistance to gas diffusion and as a consequence decreased stomatal conductance, transpiration and photosynthesis. Also, the results indicated that epicuticular waxes do help prevent photodamage in L. lanigerum, and so this property could benefit plants living in arid environments with high solar radiation.  相似文献   

16.
The effects of 4 or 8 drought cycles on four grass species,Cenchrus pennisetiformis, Leptochloa fusca, Panicum turgidum, andPennisetum divisum were assessed in a pot experiment. There were significant differences between the species in biomass production under water stress.C. pennisetiformis andP. turgidum produced significantly greater fresh and dry matter thanP. divisum and especially thanL. fusca. L. fusca had the lowest andP. divisum highest osmotic potentials compared with the other species after the completion of 4 or 8 drought cycles. Osmotic adjustment (difference between osmotic potential of droughted/rehydrated plants and control plants) was highest inL. fusca. The stomatal conductance was significantly decreased with increased drought stress inC. pennisetiformis. The elasticity ofC. pennisetiformis, P. turgidum andP. divisum increased with increase in number of drought cycles, whereas that ofL. fusca remained unchanged.L. fusca andP. turgidum had the lowest leaf hydration of all species after 8 drought cycles. The chlorophyllsa andb in all species remained unaffected by drought treatments. The proline content ofC. pennisetiformis andL. fusca increased significantly with increased drought stress, whereas that ofP. turgidum remained unaffected after 4 or 8 drought cycles.L. fusca synthesized great amount of leaf soluble proteins during 8 drought cycles, whereasP. divisum had low protein content after 4 drought cycles. The protein contents ofC. pennisetiformis andP. turgidum remained unaffected after 8 drought cycles. The leaf epicuticular wax ofL. fusca increased consistently with increased drought stress, but leaf wax ofP. divisum increased only at the highest drought stress and that ofC. pennisetiformis andP. turgidum increased after 4 drought cycles. On the basis of these results it was established thatC. pennisetiformis andP. turgidum were the most tolerant,P. divisum intermediate, andL. fusca the most sensitive to drought stress. The osmotic adjustment did not positively correlate with the degree of drought resistance.  相似文献   

17.
Avocado shoots were multiplied in vitro in two culture media of different consistency, double phase and solid medium, at three different irradiance levels: 35, 60 and 85 μmol m−2 s−1. Effects of culture and environmental conditions in multiplication rate, rooting capacity, hyperhydricity and leaf surface morphology of microcuttings were evaluated. Double phase medium induced hyperhydricity, producing leaf microcuttings with deformed stomata and low crystalline epicuticular waxes; microcuttings also showed reduced rooting capacity. By contrast, solid medium promoted leaf area development on microcuttings and decreased hyperhydricity. Stomatal index was not affected by these treatments but stomatal density was, interacting with the amount of irradiance applied. Increasing irradiance decreased concentration of chlorophyll a and carotenoids in the leaf but did not affect leaf hyperhydricity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Summary An efficient protocol has been developed for the regeneration of plantlets from leaf explants of witloof chicory (Cichorium intybus L.). Regeneration via callus was obtained on modified Murashige and Skoog semisolid medium (MS) containing 2.0 μM indole-3-acetic acid +5.0 μM 6-furfurylaminopurine (kinetin), and 1000 mgl−1 casein hydrolyzate. At least five or more shoots regenerated from each callus. The shoots were rooted on MS +0.2 μM indole-3-butyric acid. The plantlets thus obtained were successfully established in soil after bardening. Esculin accumulation was recorded in plant tissues at different stages of differentiation in in vitro cultures and compared with in vivo-grown, plants. The esculin accumulation was higher in in vitro plants.  相似文献   

19.
Summary We have established an in vitro system for the induction and study of nodulation in Pachyrhizus erosus (jicama) via a hairy root-Rhizobium coculture. In vitro-grown P. erosus plantlets were infected with Agrobacterium rhizogenes (ATCC No. 15834) and two hairy root lines were established. Hairy roots were grown in a split-plate system in which compartment I (CI) contained MS medium with nitrogen and different sucrose levels (0–6%), while CII held MS medium without nitrogen and sucrose. Nodule-like structures developed in transformed roots grown in CI with 2–3% surcose, inoculated with Rhizobium sp. and transferred to CII. Nodule-like structures that developed from hairy roots lacked the rigid protective cover observed in nodules from plants grown in soil. Western blot analysis of nodules from hairy roots and untransformed roots (of greenhouse-grown jicama) showed expression of glutamine synthetase leghemoglobin and nodulins. Leghemoglobin was expressed at low levels in hairy root nodules.  相似文献   

20.
Cotton leaves are more physiologically active than the bractand the capsule wall of the fruiting structures. To elucidatethe disparities in their physiological behaviour, epidermalcell density, stomatal index, stomatal size, trichome densityand type, and epicuticular wax ultrastructure of cotton leaf,bract and capsule wall were delineated using scanning electronmicroscopy (SEM). The epidermal cells of the outer periclinalwalls on both surfaces of the leaf and bract were raised andconvex. Conversely, the capsule wall epidermal cells were polygonalwith flat outer periclinal walls. The stomatal complex in theleaf and bract was paracytic, whereas in the capsule wall thestomatal complex was anomocytic. The adaxial and abaxial stomataof the leaf were coplanar to the epidermal surface, as opposedto the raised adaxial stomata on the bract. On the contrary,the stomata on the capsule wall surface appeared to be slightlysunken. Furthermore, the capsule wall stomata were larger thanthe stomata on either surface of both the leaf and the bract.The stomatal index was greater on the abaxial surfaces of theleaf and the bract (18.4 and 9.4, respectively) than their correspondingadaxial surfaces (14.4 and 4.7, respectively). Leaves had thehighest stomatal index followed by the bract and the capsulewall. The indumentum consisted of glandular and nonglandulartrichomes, the density of which was greater on the abaxial surfacesthan on the adaxial surfaces of the leaf and bract. The capsulewall indumentum lacked nonglandular trichomes. Epicuticularwax occurred in the form of striations. However, the striationpattern varied among the organs. This study clearly illustratesmorphological disparities in the epidermal features of leaf,bract and capsule wall, helping to explain their physiologicaldivergence. Copyright 2000 Annals of Botany Company Gossypium hirsutum, epicuticular wax, raised stomata, scanning electron microscopy, stomatal index, trichomes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号