首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
R Jansen  D Tollervey    E C Hurt 《The EMBO journal》1993,12(6):2549-2558
Yeast fibrillarin (NOP1) is an evolutionarily conserved, nucleolar protein necessary for multiple steps in ribosome biogenesis. Yeast mutants lacking a functional NOP1 gene can be complemented by human fibrillarin but are temperature sensitive for growth and impaired in pre-rRNA processing. In order to identify components which interact functionally with human fibrillarin in yeast, we isolated extragenic suppressors of this phenotype. One dominant suppressor, sof1-56, which is allele-specific for human fibrillarin and restores growth and pre-RNA processing at 35 degrees C, was cloned by in vivo complementation. The wild-type allele of SOF1 is essential for cell growth and encodes a novel 56 kDa protein. In its central domain, SOF1 contains a repeated sequence also found in beta-subunits of trimeric G-proteins and the splicing factor PRP4. A single amino acid exchange in the G beta-like repeat domain is responsible for the suppressing activity of sof1-56. Indirect immunofluorescence shows that SOF1 is located within the yeast nucleolus. Co-immunoprecipitation demonstrates the physical association of SOF1 with U3 small nucleolar RNA and NOP1. In vivo depletion of SOF1 leads to impaired pre-rRNA processing and inhibition of 18S rRNA production. Thus, SOF1 is a new component of the nucleolar rRNA processing machinery.  相似文献   

3.
In order to study the structural and functional organization of the eukaryotic nucleolus, we have started to isolate and characterize nucleolar components of the yeast Saccharomyces cerevisiae. We have identified a major 38 kd nucleolar protein (NOP1), which is located within nucleolar structures resembling the dense fibrillar region of mammalian nucleoli. This 38 kd protein is conserved in evolution since affinity-purified antibodies against the yeast protein stain the nucleolus of mammalian cells in indirect immunofluorescence microscopy and the yeast protein is decorated by antibodies directed against human fibrillarin. Affinity-purified antibodies against the yeast NOP1 efficiently precipitate at least seven small nuclear RNAs involved in rRNA maturation. We have cloned the gene encoding the yeast NOP1 protein. Haploid cells carrying a disrupted copy of the gene are not viable, showing that NOP1 is essential for cell growth. The gene codes for a 34.5 kd protein which contains glycine/arginine rich sequence repeats at the amino terminus similar to those found in other nucleolar proteins. This suggests that NOP1 is in association with small nucleolar RNAs, required for rRNA processing and likely to be the homologue of the mammalian fibrillarin.  相似文献   

4.
Different point mutations in the nucleolar protein fibrillarin (Nop1p in Saccharomyces cerevisiae) can inhibit different steps in ribosome synthesis. A screen for mutations that are synthetically lethal (sl) with the nop1-5 allele, which inhibits pre-rRNA processing, identified NOP56. An independent sl mutation screen with nop1-3, which inhibits pre-rRNA methylation, identified a mutation in NOP58. Strikingly, Nop56p and Nop58p are highly homologous (45% identity). Both proteins were found to be essential and localized to the nucleolus. A temperature-sensitive lethal mutant allele, nop56-2, inhibited many steps in pre-rRNA processing, particularly on the pathway of 25S/5.8S rRNA synthesis, and led to defects in 60S subunit assembly. Epitope-tagged constructs show that both Nop56p and Nop58p are associated with Noplp in complexes, Nop56p and Nop1p exhibiting a stoichiometric association. These physical interactions presumably underlie the observed sl phenotypes. Well-conserved homologs are present in a range of organisms, including humans (52% identity between human hNop56p and yeast Nop56p), suggesting that these complexes have been conserved in evolution.  相似文献   

5.
We have characterized a new member (U19) of a group of mammalian small nuclear RNAs that are not precipitable with antibodies against fibrillarin, a conserved nucleolar protein associated with most of the small nucleolar RNAs characterized to date. Human U19 RNA is 200 nucleotides long and possesses 5'-monophosphate and 3'-hydroxyl termini. It lacks functional boxes C and D, sequence motifs required for fibrillarin binding in many other snoRNAs. Human and mouse RNA are 86% homologous and can be folded into similar secondary structures, a finding supported by the results of nuclease probing of the RNA. In the human genome, U19 RNA is encoded in the intron of an as yet not fully characterized gene and could be faithfully processed from a longer precursor RNA in HeLa cell extracts. During fractionation of HeLa cell nucleolar extracts on glycerol gradients, U19 RNA was associated with higher-order structures of approximately 65S, cosedimenting with complexes containing 7-2/MRP RNA, a conserved nucleolar RNA shown to be involved in 5.8S rRNA processing in yeast cells.  相似文献   

6.
J M Hughes  M Ares  Jr 《The EMBO journal》1991,10(13):4231-4239
Multiple processing events are required to convert a single eukaryotic pre-ribosomal RNA (pre-rRNA) into mature 18S (small subunit), 5.8S and 25-28S (large subunit) rRNAs. We have asked whether U3 small nucleolar RNA is required for pre-rRNA processing in vivo by depleting Saccharomyces cerevisiae of U3 by conditional repression of U3 synthesis. The resulting pattern of accumulation and depletion of specific pre-rRNAs indicates that U3 is required for multiple events leading to the maturation of 18S rRNA. These include an initial cleavage within the 5' external transcribed spacer, resembling the U3 dependent initial processing event of mammalian pre-rRNA. Formation of large subunit rRNAs is unaffected by U3 depletion. The similarity between the effects of U3 depletion and depletion of U14 small nucleolar RNA and the nucleolar protein fibrillarin (NOP1) suggests that these could be components of a single highly conserved processing complex.  相似文献   

7.
Ke Wu  Pei Wu    John P. Aris 《Nucleic acids research》2001,29(14):2938-2949
A genetic screen for mutations synthetically lethal with temperature sensitive alleles of nop2 led to the identification of the nucleolar proteins Nop12p and Nop13p in Saccharomyces cerevisiae. NOP12 was identified by complementation of a synthetic lethal growth phenotype in strain YKW35, which contains a single nonsense mutation at codon 359 in an allele termed nop12-1. Database mining revealed that Nop12p was similar to a related protein, Nop13p. Nop12p and Nop13p are not essential for growth and each contains a single canonical RNA recognition motif (RRM). Both share sequence similarity with Nsr1p, a previously identified, non-essential, RRM-containing nucleolar protein. Likely orthologs of Nop12p were identified in Drosophila and Schizosaccharomyces pombe. Deletion of NOP12 resulted in a cold sensitive (cs) growth phenotype at 15°C and slow growth at 20 and 25°C. Growth of a nop12Δ strain at 15 and 20°C resulted in impaired synthesis of 25S rRNA, but not 18S rRNA. A nop13 null strain did not produce an observable growth phenotype under the laboratory conditions examined. Epitope-tagged Nop12p, which complements the cs growth phenotype and restores normal 25S rRNA levels, was localized to the nucleolus by immunofluorescence microscopy. Epitope-tagged Nop13p was distributed primarily in the nucleolus, with a lesser portion localizing to the nucleoplasm. Thus, Nop12p is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures.  相似文献   

8.
The four nucleolar proteins NOP1, SSB1, GAR1, and NSR1 of Saccharomyces cerevisiae share a repetitive domain composed of repeat units rich in glycine and arginine (GAR domain). We have cloned and sequenced a fifth member of this family, NOP3, and shown it to be essential for cell viability. The NOP3 open reading frame encodes a 415 amino acid protein with a predicted molecular mass of 45 kD, containing a GAR domain and an RNA recognition motif. NOP3-specific antibodies recognize a 60-kD protein by SDS-PAGE and decorate the nucleolus and the surrounding nucleoplasm. A conditional lethal mutation, GAL::nop3, was constructed; growth of the mutant strain in glucose medium represses NOP3 expression. In cells depleted of NOP3, production of cytoplasmic ribosomes is impaired. Northern analysis and pulse-chase labeling indicate that pre-rRNA processing is inhibited at the late steps, in which 27SB pre-rRNA is cleaved to 25S rRNA and 20S pre-rRNA to 18S rRNA.  相似文献   

9.
The diploid germinal nucleus of the ciliated protozoan Tetrahymena thermophila is unusual among eukaryotes in that it encodes a single copy of the gene for rRNA allowing identification of cis-acting mutations in rDNA affecting rRNA structure, function, and processing. The generally conserved nucleolar protein fibrillarin has been characterized from a number of systems and is involved in pre-rRNA processing. We have demonstrated that Tetrahymena has fibrillarin and have analyzed the cDNA and the genomic DNA encoding this protein. The derived amino acid sequence of the N-terminal region of Tetrahymena fibrillarin shows little similarity with the generally highly conserved glycine/arginine-rich N-terminal domain of other eukaryotic fibrillarins. The remainder of the amino acid sequence of the molecule is more conserved. Polyclonal antibodies generated against the full-length Tetrahymena fibrillarin expressed in bacteria recognize a protein of M(r) approximately 32,000 in whole-cell or nucleolar preparations. Immunocytochemistry localizes fibrillarin to nucleoli in the somatic macronuclei of vegetative cells. Transformation experiments demonstrate that fibrillarin is an essential protein in Tetrahymena. The Tetrahymena fibrillarin is expressed but does not complement a NOP1 null mutation when transformed into the yeast Saccharomyces cerevisiae, indicating less functional conservation among fibrillarins than previously suggested.  相似文献   

10.
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus.  相似文献   

11.
To identify new gene products that participate in ribosome biogenesis, we carried out a screen for mutations that result in lethality in combination with mutations in DRS1, a Saccharomyces cerevisiae nucleolar DEAD-box protein required for synthesis of 60S ribosomal subunits. We identified the gene NOP7that encodes an essential protein. The temperature-sensitive nop7-1 mutation or metabolic depletion of Nop7p results in a deficiency of 60S ribosomal subunits and accumulation of halfmer polyribosomes. Analysis of pre-rRNA processing indicates that nop7 mutants exhibit a delay in processing of 27S pre-rRNA to mature 25S rRNA and decreased accumulation of 25S rRNA. Thus Nop7p, like Drs1p, is required for essential steps leading to synthesis of 60S ribosomal subunits. In addition, inactivation or depletion of Nop7p also affects processing at the A0, A1, and A2 sites, which may result from the association of Nop7p with 35S pre-rRNA in 90S pre-rRNPs. Nop7p is localized primarily in the nucleolus, where most steps in ribosome assembly occur. Nop7p is homologous to the zebrafish pescadillo protein necessary for embryonic development. The Nop7 protein contains the BRCT motif, a protein-protein interaction domain through which, for example, the human BRCA1 protein interacts with RNA helicase A.  相似文献   

12.
RNA B is one of three abundant trimethylguanosine-capped U small nuclear RNAs (snRNAs) of Trypanosoma brucei which is not strongly identified with other U snRNAs by sequence homology. We show here that RNA B is a highly diverged U3 snRNA homolog likely involved in pre-rRNA processing. Sequence identity between RNA B and U3 snRNAs is limited; only two of four boxes of homology conserved between U3 snRNAs are obvious in RNA B. These are the box A homology, specific for U3 snRNAs, and the box C homology, common to nucleolar snRNAs and required for association with the nucleolar protein, fibrillarin. A 35-kDa T. brucei fibrillarin homolog was identified by using an anti-Physarum fibrillarin monoclonal antibody. RNA B and fibrillarin were localized in nucleolar fractions of the nucleus which contained pre-rRNAs and did not contain nucleoplasmic snRNAs. Fibrillarin and RNA B were precipitated by scleroderma patient serum S4, which reacts with fibrillarins from diverse organisms; RNA B was the only trimethylguanosine-capped RNA precipitated. Furthermore, RNA B sedimented with pre-rRNAs in nondenaturing sucrose gradients, similarly to U3 and other nucleolar snRNAs, suggesting that RNA B is hydrogen bonded to rRNA intermediates and might be involved in their processing.  相似文献   

13.
Most eukaryotic C/D small nucleolar RNAs (snoRNAs) guide 2′-O methylation (Nm) on rRNA and are also involved in rRNA processing. The four core proteins that bind C/D snoRNA in Trypanosoma brucei are fibrillarin (NOP1), NOP56, NOP58, and SNU13. Silencing of NOP1 by RNA interference identified rRNA-processing and modification defects that caused lethality. Systematic mapping of 2′-O-methyls on rRNA revealed the existence of hypermethylation at certain positions of the rRNA in the bloodstream form of the parasites, suggesting that this modification may assist the parasites in coping with the major temperature changes during cycling between their insect and mammalian hosts. The rRNA-processing defects of NOP1-depleted cells suggest the involvement of C/D snoRNA in trypanosome-specific rRNA-processing events to generate the small rRNA fragments. MRP RNA, which is involved in rRNA processing, was identified in this study in one of the snoRNA gene clusters, suggesting that trypanosomes utilize a combination of unique C/D snoRNAs and conserved snoRNAs for rRNA processing.  相似文献   

14.
We have identified the gene for the yeast nucleolar protein p38 and deduced the primary structure of p38 from its sequence. We propose the name NOP1 (nucleolar protein 1) for this gene. NOP1 encodes a 327 amino acid protein of 34,470 daltons and is flanked by potential promoter and polyadenylation sequences. Blot analyses indicate that the mRNA transcribed from NOP1 is approximately 1.3 kilobases in size and that there is one NOP1 gene per haploid genome. The amino-terminal sequence of p38 is homologous with the 31 known amino-terminal residues of the autoimmune antigen fibrillarin, confirming the previously observed similarity between p38 and this mammalian nucleolar protein. Consistent with this, p38 cross-reacts with serum from a patient with the autoimmune disease scleroderma. A putative nuclear localization signal can be identified in p38. Interestingly, a repetitive amino acid sequence motif begins near the amino terminus of p38. This motif is approximately 80 residues long, is rich in glycine and arginine, and shows striking sequence homology to mammalian nucleolins and certain nucleic acid binding proteins.  相似文献   

15.
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.  相似文献   

16.
GAR1 is a nucleolar protein which is associated with small nucleolar RNAs (snoRNAs) and which is required for pre-ribosomal RNA processing. In Saccharomyces cerevisiae, the GAR1 gene is essential for cell viability. We have cloned and sequenced the GAR1 gene from the distantly related yeast Schizosaccharomyces pombe. The SpGAR1 gene, which contains two small introns, codes for a 194 amino-acid protein of 20 kDa. A protein sequence comparison indicates that SpGAR1 is 65% identical to ScGAR1. Anti-ScGAR1 antibodies recognize SpGAR1, emphasizing the structural conservation of the protein. Immunostaining of S.pombe cells with these antibodies reveals that SpGAR1 is localized in the nucleolus, as is the case in S.cerevisiae. Moreover, SpGAR1 can substitute for GAR1 in S.cerevisiae, indicating that the two proteins are functionally equivalent. These results suggest a parallel evolutionary conservation of proteins and RNAs with which GAR1 interacts in mediating its pre-rRNA processing and viability functions. After fibrillarin, GAR1 is the second protein of the snoRNPs shown to have been conserved throughout evolution.  相似文献   

17.
Fibrillarin is a key nucleolar protein in eukaryotes which associates with box C/D small nucleolar RNAs (snoRNAs) directing 2'-O-ribose methylation of the rRNA. In this study we describe two genes in Arabidopsis thaliana, AtFib1 and AtFib2, encoding nearly identical proteins conserved with eukaryotic fibrillarins. We demonstrate that AtFib1 and AtFib2 proteins are functional homologs of the yeast Nop1p (fibrillarin) and can rescue a yeast NOP1-null mutant strain. Surprisingly, for the first time in plants, we identified two isoforms of a novel box C/D snoRNA, U60.1f and U60.2f, nested in the fifth intron of AtFib1 and AtFib2. Interestingly after gene duplication the host intronic sequences completely diverged, but the snoRNA was conserved, even in other crucifer fibrillarin genes. We show that the U60f snoRNAs accumulate in seedlings and that their targeted residue on the 25 S rRNA is methylated. Our data reveal that the three modes of expression of snoRNAs, single, polycistronic, and intronic, exist in plants and suggest that the mechanisms directing rRNA methylation, dependent on fibrillarin and box C/D snoRNAs, are evolutionarily conserved in plants.  相似文献   

18.
Giardia lamblia, the ancient eukaryote does not have nucleolus but produces the fibrillarin protein that may be used for pre-rRNA processing. The nucleoli of eukaryotes contain complex population of small nucleolar RNAs, known as snoRNAs, several of which are required for rRNA processing. This report describes the full-length cloning of fibrillarin gene from Giardia lamblia, using RTPCR and the production of recombinant fibrillarin protein in Escherichia coli strain BL21 (DE3) as N-terminal His-tag protein. The condition for production of soluble protein was standardized. The expressed protein was purified by using Ni-chelation chromatography and used for functional studies. The small nuclear RNAs (snRNAs), RNA D, RNA J, and RNA H, containing box C, box D, and box C/D, respectively, of Giardia were also cloned by RTPCR. Antibody raised against the recombinant protein was used to identify the fibrillarin in giardial nuclear extract. The interaction of snRNAs with recombinant fibrillarin was followed using North-Western hybridization. Gel electrophoresis mobility shift assay demonstrated that bacterially expressed protein may participate in the in vitro interaction with RNA J, RNA H, and RNA D. Our results indicate that the recombinant fibrillarin by itself is able to bind and does not require the involvement of any other protein for this binding to the three snRNAs.  相似文献   

19.
20.
In human cells, PinX1 protein has recently been shown to regulate telomere length by repressing the telomerase. In this work, we show that the putative yeast homolog of PinX1, encoded by the YGR280c open reading frame (ORF), is a new component of the ribosomal RNA processing machinery. The protein has a KK(E/D) C-terminal domain typical of nucleolar proteins and bears a putative RNA interacting domain widespread in eukaryotes called the G-patch. The protein was hence renamed Gno1p (G-patch nucleolar protein). GNO1 deletion results in a large growth defect due to the inhibition of the pre-ribosomal RNA processing first cleavage steps at sites A(0), A(1), and A(2). Furthermore, Gno1p is involved in the final 3'-end trimming of U18 and U24 small nucleolar RNAs. A mutational analysis showed that the G-patch of Gno1p is essential for both functions, whereas the KK(E/D) repeats are only required for U18 small nucleolar RNA maturation. We found that PinX1 complemented the gno1-Delta mutation, suggesting that it has a dual function in telomere length regulation and ribosomal RNA maturation in agreement with its telomeric and nucleolar localization in human cells. Conversely, we found that Gno1p does not exhibit the in vivo telomerase inhibitor activity of PinX1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号