首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Dr...  相似文献   

2.
The associative learning abilities of the fruit fly, Drosophila melanogaster, have been demonstrated in both classical and operant conditioning paradigms. Efforts to identify the neural pathways and cellular mechanisms of learning have focused largely on olfactory classical conditioning. Results derived from various genetic and molecular manipulations provide considerable evidence that this form of associative learning depends critically on neural activity and cAMP signaling in brain neuropil structures called mushroom bodies. Three other behavioral learning paradigms in Drosophila serve as the main subject of this review. These are (1) visual and motor learning of flies tethered in a flight simulator, (2) a form of spatial learning that is independent of visual and olfactory cues, and (3) experience-dependent changes in male courtship behavior. The present evidence suggests that at least some of these modes of learning are independent of mushroom bodies. Applying targeted genetic manipulations to these behavioral paradigms should allow for a more comprehensive understanding of neural mechanisms responsible for diverse forms of associative learning and memory.  相似文献   

3.
Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images.  相似文献   

4.
《Fly》2013,7(1):91-104
Mental retardation - more commonly known nowadays as intellectual disability - is a severe neurological condition affecting 3% of the general population. As a result of analysis of familial cases and recent advances in clinical genetic testing great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.  相似文献   

5.
全面揭示脑的奥秘是现代科学所面临的最大挑战.通过脑研究,我们可以获得防治脑疾病、认知及心理障碍的线索和工具,找到提高人类智力和心理健康水平的途径,并发展出具备高等智能的机器人.果蝇作为研究基因-神经回路-行为关系的首选模式动物,日益得到重视.本文围绕果蝇复杂脑功能包括视觉学习记忆、欲望与动机、情感相关行为和社会行为的研究意义及前景、已知调控基因及神经回路以及未来研究方向展开综述,便于读者把握相关领域的全貌.  相似文献   

6.
Variation in learning and memory abilities among closely related species, or even among populations of the same species, has opened research into the relationship between cognition, ecological context and the fitness costs, and benefits of learning and memory. Such research programmes have long been dominated by vertebrate studies and by the assumption of a relationship between cognitive abilities, brain size and metabolic costs. Research on these 'large brained' organisms has provided important insights into the understanding of cognitive functions and their adaptive value. In the present review, we discuss some aspects of the fitness costs of learning and memory by focusing on 'mini-brain' studies. Research on learning and memory in insects has challenged some traditional positions and is pushing the boundaries of our understanding of the evolution of learning and memory.  相似文献   

7.
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.  相似文献   

8.
Tang S  Juusola M 《PloS one》2010,5(12):e14455
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.  相似文献   

9.
A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.  相似文献   

10.
This article is part of a Special Issue “Estradiol and cognition”.Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions.  相似文献   

11.
This article is part of a Special Issue “Estradiol and cognition”.In addition to their well-studied and crucial effects on brain development and aging, an increasing number of investigations across vertebrate species indicate that estrogens like 17β-estradiol (E2) have pronounced and rapid effects on cognitive function. The incidence and regulation of the E2-synthesizing enzyme aromatase at the synapse in regions of the brain responsible for learning, memory, social communication and other complex cognitive processes suggest that local E2 production and action affect the acute and chronic activity of individual neurons and circuits. Songbirds in particular are excellent models for the study of this “synaptocrine” hormone provision given that aromatase is abundantly expressed in neuronal soma, dendrites, and at the synapse across many brain regions in both sexes. Additionally, songbirds readily acquire and recall memories in laboratory settings, and their stereotyped behaviors may be manipulated and measured with relative ease. This leads to a rather unparalleled advantage in the use of these animals in studies of the role of neural aromatization in cognition. In this review we describe the results of a number of experiments in songbird species with a focus on the influence of synaptic E2 provision on two cognitive processes: auditory discrimination reliant on the caudomedial nidopallium (NCM), a telencephalic region likely homologous to the auditory cortex in mammals, and spatial memory dependent on the hippocampus. Data from these studies are providing evidence that the local and acute provision of E2 modulates the hormonal, electrical, and cognitive outputs of the vertebrate brain and aids in memory acquisition, retention, and perhaps the confluence of memory systems.  相似文献   

12.
A number of single gene mutations dramatically reduce the ability of fruit flies to learn or to remember. Cloning of the affected genes implicated the adenylyl cyclase second-messenger system as key in learning and memory. The expression patterns of these genes, in combination with other data, indicates that brain structures called mushroom bodies are crucial for olfactory learning. However, the mushroom bodies are not dedicated solely to olfactory processing; they also mediate higher cognitive functions in the fly, such as visual context generalization. Molecular genetic manipulations, coupled with behavioral studies of the fly, will identify rudimentary neural circuits that underly multisensory learning and perhaps also the circuits that mediate more-complex brain functions, such as attention.  相似文献   

13.
A number of single gene mutations dramatically reduce the ability of fruit flies to learn or to remember. Cloning of the affected genes implicated the adenylyl cyclase second-messenger system as key in learning and memory. The expression patterns of these genes, in combination with other data, indicates that brain structures called mushroom bodies are crucial for olfactory learning. However, the mushroom bodies are not dedicated solely to olfactory processing; they also mediate higher cognitive functions in the fly, such as visual context generalization. Molecular genetic manipulations, coupled with behavioral studies of the fly, will identify rudimentary neural circuits that underly multisensory learning and perhaps also the circuits that mediate more-complex brain functions, such as attention.  相似文献   

14.
Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and six generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large‐brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.  相似文献   

15.
A large body of evidence suggests that cognitive functions rely on the coordination of ensembles of neurons across brain circuits. One example is social memory, the ability to recognize and remember other conspecifics. A broad range of brain regions have been implicated in social behaviors and memory processes. At the single-cell level, neurons from different brain areas have responded to specific social features. The coordination of these ensembles both within a region and across structures is required to support social memory and decision-making. The synchronous activation of these neuronal ensembles could allow for the integration of different aspects of a social episode into a unified representation of experience. In this review, recent results on the circuit basis and physiological mechanisms of social memory are discussed, from a systems neuroscience perspective. An integrative framework of the neuronal ensemble dynamics supporting this fundamental cognitive ability is proposed.  相似文献   

16.
Equipped with a mini brain smaller than one cubic millimeter and containing only 950,000 neurons, honeybees could be indeed considered as having rather limited cognitive abilities. However, bees display a rich and interesting behavioral repertoire, in which learning and memory play a fundamental role in the framework of foraging activities. We focus on the question of whether adaptive behavior in honeybees exceeds simple forms of learning and whether the neural mechanisms of complex learning can be unraveled by studying the honeybee brain. Besides elemental forms of learning, in which bees learn specific and univocal links between events in their environment, bees also master different forms of non-elemental learning, including categorization, contextual learning and rule abstraction, both in the visual and in the olfactory domain. Different protocols allow accessing the neural substrates of some of these learning forms and understanding how complex problem solving can be achieved by a relatively simple neural architecture. These results underline the enormous richness of experience-dependent behavior in honeybees, its high flexibility, and the fact that it is possible to formalize and characterize in controlled laboratory protocols basic and higher-order cognitive processing using an insect as a model. This paper is dedicated to the memory of Guillermo ‘Willy’ Zaccardi (1972–2007), disciple and friend beyond time and distance, who will always be remembered with a smile.  相似文献   

17.
Utilizing advances in functional neuroimaging and computational neural modeling, neuroscientists have increasingly sought to investigate how distributed networks, composed of functionally defined subregions, combine to produce cognition. Large-scale, biologically realistic neural models, which integrate data from cellular, regional, whole brain, and behavioral sources, delineate specific hypotheses about how these interacting neural populations might carry out high-level cognitive tasks. In this review, we discuss neuroimaging, neural modeling, and the utility of large-scale biologically realistic models using modeling of short-term memory as an example. We present a sketch of the data regarding the neural basis of short-term memory from non-human electrophysiological, computational and neuroimaging perspectives, highlighting the multiple interacting brain regions believed to be involved. Through a review of several efforts, including our own, to combine neural modeling and neuroimaging data, we argue that large scale neural models provide specific advantages in understanding the distributed networks underlying cognition and behavior.  相似文献   

18.
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.  相似文献   

19.
Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors.  相似文献   

20.
在生命科学领域,大脑如何工作一直是最具神秘性和最有挑战性的科学问题之一。了解认知与记忆的分子和神经基础不仅可以帮助我们探索神经障碍和精神紊乱的发病机理,并且为类脑人工智能提供了理论基础。现如今已经发展出各种神经技术来解决这个终极生物学问题,其中包括分子遗传学工具(比如GEVIs和viral trans-synaptic labelling vectors),来进行神经回路活性与神经解剖学成像。作为一个强有力的遗传学工具,从基因组编辑到基因表达控制,从细胞成像到分子追踪,CRISPR/Cas9系统已经在各科学领域掀起了一场革命。在该综述中,我们讨论了CRISPR/Cas9技术在神经科学中的应用与局限。最后,为研究认知与记忆的神经基础提供了改进CRISPR/Cas9技术的潜在方向与策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号