首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNA replication initiation sites and initiation frequencies over 12. 5 kb of the human c-myc locus, including 4.6 kb of new 5' sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at approximately 0.5 kb upstream of exon 1 of the c-myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c-myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c-myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa.  相似文献   

2.
Activity of the c-myc Replicator at an Ectopic Chromosomal Location   总被引:5,自引:0,他引:5       下载免费PDF全文
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.  相似文献   

3.
4.
R T Hay  M L DePamphilis 《Cell》1982,28(4):767-779
Initiation sites for DNA synthesis were located at the resolution of single nucleotides in and about the genetically defined origin of replication (ori) in replicating SV40 DNA purified from virus-infected cells. About 50% of the DNA chains contained an oligoribonucleotide of six to nine residues covalently attached to their 5' ends. Although the RNA-DNA linkage varied, the putative RNA primer began predominantly with rA. The data reveal that initiation of DNA synthesis is promoted at a number of DNA sequences that are asymmetrically arranged with respect to ori: 5' ends of nascent DNA are located at several sites within ori, but only on the strand that also serves as the template for early mRNA, while 5' ends of nascent DNA with the opposite orientation are located only outside ori on its early gene side. This clear transition between discontinuous (initiation sites) and continuous (no initiation sites) DNA synthesis defines the origin of bidirectional replication at nucleotides 5210--5211 and demonstrates that discontinuous synthesis occurs predominantly on the retrograde arms of replication forks. Furthermore, it appears that the first nascent DNA chain is initiated within ori by the same mechanism used to initiate nascent DNA ("Okazaki fragments") throughout the genome.  相似文献   

5.
6.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

7.
The role of local sequence information in establishing the chromatin structure of the human c-myc upstream region (MUR) was investigated. Adeno-associated virus (AAV)-mediated gene transduction was used to introduce an additional unrearranged copy of the 2.4 kb HindIII-XhoI fragment of the MUR into a novel location in the genome in each of two cloned HeLa cell lines. The AAV-based rep- cap- viral vector SKMA used to transduce the MUR retained only 1.4 kb (24%) of the AAV genome and could accommodate inserts as large as 2.4 kb. SKMA was capable of infecting HeLa cells and integrating into the host genome at single copy number. Integration may have occurred at a preferred site in the HeLa genome, but this site was apparently distinct from the previously identified preferred AAV integration site on human chromosome 19. Indirect end-labelling was used to map DNase I and micrococcal nuclease (MNase) cleavage sites over the transduced c-myc sequences and the endogenous c-myc loci in infected HeLa cells. A similarly ordered chromatin domain, extending 5' from c-myc promoter P0, was found to exist at the transduced c-myc locus in each clone. The position and relative sensitivity of 13 MNase cleavage sites and five DNase I hypersensitive sites, originally identified at the endogenous MUR in non-transduced cells, were shown to be conserved when this DNA was moved to a new chromosome site. A conserved DNase I hypersensitive site also was mapped to the region between the left AAV terminal repeat and AAV promoter P5. These results suggest that the information required to establish the particular chromatin structure of the MUR resides within the local DNA sequence of that region.  相似文献   

8.
Replication of the human genome requires the activation of thousands of replicons distributed along each one of the chromosomes. Each replicon contains an initiation, or origin, site, at which DNA synthesis begins. However, very little information is known about the nature and positioning of these initiation sites along human chromosomes. We have recently focused our attention to a 1.1 kb region of human chromosome 2 which functioned as an episomal origin in the yeast Saccharomyces cerevisiae. This region corresponded to the largest exon of a putative ribulose-5-phosphate-3-epimerase gene (RPE). In the present study we have used a real-time PCR-based nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 13.4 kb region encompassing the putative RPE gene. By applying this analysis to a 1-1.4 kb nascent strand DNA fraction isolated from both normal skin fibroblasts, and the breast cell line MCF10; we have identified five initiation sites within the 13.4 kb region of chromosome 2. The initiation sites appear to map to similar positions in both cell lines and occur outside the coding regions of the putative RPE gene.  相似文献   

9.
10.
A new round of chromosomal replication of a temperature-sensitive initiation mutant (dnaC) of Escherichia coli was initiated synchronously by a temperature shift from a nonpermissive to a permissive condition in the presence of arabinosyl cytosine. Increased amounts of nascent DNA fragments with homology for the chromosomal segment containing the replication origin (oriC) were found. The nascent DNA fragments were purified and treated with alkali to hydrolyze putative primer RNA and to expose 5'-hydroxyl DNA ends at the RNA-DNA junctions. The ends were then labeled selectively with T4 polynucleotide kinase and [gamma-32P]ATP at 0 degrees C and the terminally-labeled initiation fragments were purified by hybridization with origin probe DNAs containing one each of the constituent strands of oriC-DNA segment. The 32P-labeled initiation sites were then located at the resolution of single nucleotides in the nucleotide sequence of the oriC segment after cleavage with restriction enzymes. Two initiation sites of DNA synthesis, 37 nucleotides apart, were detected in one of the component strands of the oriC; in other words, in the strand whose 5' to 3' polynucleotide polarity lies counterclockwise on the E. coli genetic map. The results support the involvement of the primer RNA in the initiation of DNA synthesis at the origin of the E. coli genome and suggest that the first initiation event is asymmetric.  相似文献   

11.
Replication of mammalian chromosomes depends on the activation of a large number of origins of DNA replication distributed along the chromosomes. We have focused our attention on a human DNA region, named ARSH1, localized to chromosome 2, that had been previously shown to act as an episomal origin in the yeast Saccharomyces cerevisiae. In the present study we have used a nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 5 kb region encompassing ARSH1. This analysis applied to a 1-1.4 kb nascent DNA strand fraction isolated from normal skin fibroblasts revealed the presence of two major initiations sites surrounding the ARSH1 region. With an equivalent DNA fraction obtained from HeLa cells, in addition to these sites, a broad initiation profile was observed which included the ARSH1 region. This DNA region however was not sufficient to support episomal replication of an ARSH1-containing plasmid transfected into HeLa cells.  相似文献   

12.
13.
Mechanistically, an origin of bidirectional DNA replication (OBR) can be defined by the transition from discontinuous to continuous DNA synthesis that must occur on each template strand at the site where replication forks originate. This results from synthesis of Okazaki fragments predominantly on the retrograde arms of forks. We have identified these transitions at a specific site within a 0.45 kb sequence approximately 17 kb downstream from the 3' end of the dihydrofolate reductase gene in Chinese hamster ovary chromosomes. At least 80% of the replication forks in a 27 kb region emanated from this OBR. Thus, initiation of DNA replication in mammalian chromosomes uses the same replication fork mechanism previously described in a variety of prokaryotic and eukaryotic genomes, suggesting that mammalian chromosomes also utilize specific cis-acting sequences as origins of DNA replication.  相似文献   

14.
15.
16.
Kwon SJ  Rao AL 《Journal of virology》2012,86(9):5204-5220
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.  相似文献   

17.
18.
DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.  相似文献   

19.
Ors12, a mammalian autonomously replicating sequence (812 bp), was previously isolated by extrusion of African green monkey (CV-1 cells) nascent DNA from active replication bubbles. It contains a region of alpha-satellite extending 168-bp from the 5'-end, and a nonrepetitive portion extending from nucleotide position 169 to nucleotide 812 that is present in less than nine copies per haploid genome. Ors12 is capable of transient autonomous DNA replication in vivo and in vitro, associates with the nuclear matrix in a cell cycle-dependent manner, and hybridizes at the centromeric region of six CV-1 cell chromosomes as well as a marker chromosome. To demonstrate that DNA replication initiates at ors12 at a native chromosomal locus, a 14.2 kb African green monkey genomic clone was isolated and sequence information was obtained that allowed us to generate eight sets of PCR primers spanning a region of 8 kb containing ors12. One set of primers occurred inside ors12. These primers were used to amplify nascent DNA strands from asynchronously growing CV-1 and African green monkey kidney (AGMK) cells, using noncompetitive and competitive PCR-based mapping methodologies. Both assays showed that DNA replication in vivo initiates preferentially in a 2.3 kb region containing ors12, as well as at a second site located 1.7 kb upstream of ors12. This study provides the first demonstration of genomic function for a centromeric mammalian origin of DNA replication, originally isolated by nascent strand extrusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号