首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we described an involvement of the C-type lectin receptor CD94 and the neuronal adhesion molecule CD56 in the interaction of natural killer (NK) cells with Hsp70-protein and Hsp70-peptide TKD. Therefore, differences in the cell surface density of these NK cell-specific markers were investigated comparatively in CD94-sorted, primary NK cells and in established NK cell lines NK-92, NKL, and YT after TKD stimulation. Initially, all NK cell types were positive for CD94; the CD56 expression varied. After stimulation with TKD, the mean fluorescence intensity (mfi) of CD94 and CD56 was upregulated selectively in primary NK cells but not in NK cell lines. Other cell surface markers including natural cytotoxicity receptors remained unaffected in all cell types. CD3-enriched T cells neither expressing CD94 nor CD56 served as a negative control. High receptor densities of CD94/CD56 were associated with an increased cytolytic response against Hsp70 membrane-positive tumor target cells. The major histocompatibility complex (MHC) class I-negative, Hsp70-positive target cell line K562 was efficiently lysed by primary NK cells and to a lower extent by NK lines NK-92 and NKL. YT and CD3-positive T cells were unable to kill K562 cells. MHC class-I and Hsp70-positive, Cx + tumor target cells were efficiently lysed only by CD94-sorted, TKD-stimulated NK cells with high CD94/CD56 mfi values. Hsp70-specificity was demonstrated by antibody blocking assays, comparative phenotyping of the tumor target cells, and by correlating the amount of membrane-bound Hsp70 with the sensitivity to lysis. Remarkably, a 14-mer peptide (LKD), exhibiting only 1 amino acid exchange at position 1 (T to L), neither stimulated Hsp70-reactivity nor resulted in an upregulated CD94 expression on primary NK cells. Taken together our findings indicate that an MHC class I-independent, Hsp70 reactivity could be associated with elevated cell surface densities of CD94 and CD56 after TKD stimulation.  相似文献   

2.
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.  相似文献   

3.
Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.  相似文献   

4.
Full-length Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) both stimulate the cytolytic activity of naive natural killer (NK) cells against Hsp70-positive tumor target cells. Here, we describe the characterization of Hsp70-NK cell interaction with binding studies using the human NK cell line YT. Binding of recombinant Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) to YT cells is demonstrated by immunofluorescence studies. A phenotypic characterization revealed that none of the recently described HSP-receptors (alpha2-macroglobulin receptor CD91, Toll-like receptors 2, 4, 9, CD14) are expressed on YT cells. Only the C-type lectin receptor CD94 is commonly expressed by YT cells and Hsp70 reactive NK cells. A correlation of the cell density-dependent, variable CD94 expression and the binding capacity of Hsp70 was detected. Furthermore, Hsp70 binding could be completely abrogated by preincubation of YT cells with a CD94-specific antibody. Competition assays using either unlabeled Hsp70 protein or an unrelated protein (GST) in 20-fold excess and binding studies with escalating doses of Hsp70 protein provide evidence for a specific and concentration-dependent interaction of Hsp70 with YT cells. In addition to Hsp70 and Hsp70C, a 14-mer Hsp70 peptide termed TKD is known to exhibit comparable stimulatory properties on NK cells. Similar to full-length Hsp70 protein (10 microg/ml-50 microg/ml), a specific binding of this peptide to YT cells was observed at 4 degrees C, at equivalent concentrations (2.0 microg/ml-8.0 microg/ml). Following a 30 min incubation period at 37 degrees C, membrane-bound Hsp70 protein and Hsp70 peptide TKD were completely taken up into the cytoplasm.  相似文献   

5.
Previously, we reported that the major stress-inducible heat shock protein 70 (Hsp70) acts as a recognition structure for natural killer (NK) cells, if localized on the cell surface of tumor cells. Incubation of purified NK cells with low-dose interleukin (IL)-2 (100 IU/mL) plus recombinant Hsp70-protein or the immunogenic 14-mer Hsp70-peptide TKDNNLLGRFELSG450-463, termed TKD (2 microg/mL), enhances the cytolytic activity against Hsp70 membrane-positive (CX+) but not against Hsp70-negative (CX-) tumor cells. Here, we show that the cytolytic activity against Hsp70-positive tumor cells is inducible by incubation of unseparated peripheral blood mononuclear cells (PBMNC) with low-dose IL-2 plus TKD. Cell sorting experiments revealed that within the PBMNC population CD94(+)/CD3(-) NK cells, and not CD94(-)/CD3(+) T cells, mediate the cytotoxic activity against Hsp70-positive tumor cells. The antitumoral effect of PBMNC stimulated either with IL-2 plus TKD or with IL-2 alone was assessed in tumor-bearing severe combined immunodeficiency/beige mice. A single intravenous (iv) injection of 40 x 10(6) IL-2 plus TKD-stimulated PBMNC (containing 5.2 x 10(6) NK cells) on day 4 results in a 60% reduction in tumor size, from 3.89 g to 1.56 g. In contrast, the adoptive transfer of the identical amount PBMNC stimulated with low-dose IL-2 only (containing 4.4 x 10(8) NK cells) reduces the tumor size only less than 10% (3.64 g). A phenotypic characterization of the excised tumors revealed that predominantly Hsp70-positive tumor cells were eliminated by TKD-activated PBMNC. Kinetic studies demonstrate that the in vivo cytolytic capacity of TKD-stimulated PBMNC is dependent on the effector to target cell ratio. An iv injection of effector cells on day 1 or 2 after tumor cell inoculation results in significantly smaller tumors (0.77 g or 0.89 g) on day 21 as compared with mice that were immunoreconstituted on day 4 or 8 (1.39 g or 2.23 g). The tumor size of nonimmunoreconstituted control animals was 3.55 g.  相似文献   

6.
A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity   总被引:5,自引:0,他引:5       下载免费PDF全文
Compared with normal cells, tumor cell lines exhibit an unusual plasma membrane localization of heat shock protein 70 (Hsp70). This tumor-selective Hsp70 membrane expression has been found to correlate with an increased sensitivity to lysis mediated by human natural killer (NK) cells that transiently adhere to plastic following cytokine stimulation. A human Hsp70-specific monoclonal antibody (mAb) detects membrane-bound Hsp70 on viable tumor cells and blocks the immune response of NK cells against Hsp70-expressing tumor cells. By peptide scanning (pep-scan) analysis, the epitope of this mAb was mapped as the C-terminal-localized 8-mer NLLGRFEL (NLL, amino acids [aa] 454-461). Most interestingly, similar to full-length Hsp70 protein, the N-terminal-extended 14-mer peptide TKDNNLLGRFELSG (TKD, aa 450-463) was able to stimulate the cytolytic and proliferative activity of NK cells at concentrations equivalent to full-length Hsp70 protein. Blocking studies revealed that an excess of the 14-mer peptide TKDNNLLGRFELSG inhibits the cytolytic activity of NK cells similar to that of Hsp70 protein. In comparison, other TKD-related peptides, including the 8-mer antibody epitope NLLGRFEL (aa 454-461), the 12-mer TKDNNLLGRFEL (aa 450-461), the 13-mer C-terminal-extended peptide NLLGRFELSGIPP (aa 454-466), the 14-mer TKD-equivalent sequences of Hsp70hom TKDNNLLGRFELTG (aa 450-463), Hsc70 TKDNNLLGKFELTG (aa 450-463), and DnaK AADNKSLGQFNLDG (aa 447-460) failed to activate NK activity.  相似文献   

7.
Böttger E  Multhoff G  Kun JF  Esen M 《PloS one》2012,7(3):e33774
In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo.  相似文献   

8.
This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70+/HLA-E) CX+ and K562 cells. However, it had no effect on the responsiveness to Hsp70/HLA-E CX cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70+/HLA-E+ leukemic blasts was weaker than that against Hsp70+/HLA-E K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-ER or HLA-EG alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.  相似文献   

9.
Pancreatic carcinoma, the fifth leading cause of cancer-related mortality, frequently presents the stress-inducible heat shock protein 70 (Hsp70) on the cell membrane. Therefore, we explored an immunological approach exploiting the efficacy of NK cells activated either with low dose IL-2 plus Hsp70-peptide TKDNNLLGRFELSG (TKD; IL-2/TKD) or with IL-2 alone in a xenograft pancreatic carcinoma model. An orthotopic injection of either 2.5 x 10(6) or 1 x 10(6) Colo357 cells in SCID/beige mice resulted in rapidly growing primary tumors and the development of hepatic metastases on days 5 and 10, respectively. In line with results of in vitro migration assays, these NK cells also had the capacity to infiltrate pancreatic tumors and liver metastases in tumor-bearing mice. In vitro, a combined treatment of NK cells with IL-2/TKD but neither of the two treatments alone causes a profound increase in the lytic capacity against Hsp70 membrane-positive Colo357 cells. In vivo, a single i.v. injection of these NK cells on day 15 post-tumor inoculation resulted in a significant reduction in tumor weights, a delayed onset of hepatic metastases, and a prolonged life expectancy. In contrast, identically treated T cells and NK cells treated with IL-2 alone were significantly less efficient in controlling pancreatic tumors and metastases. Most importantly, four repeated i.v. infusions of IL-2/TKD-activated NK cells eradicated primary tumors and prevented hepatic metastases. In summary, our mouse data have implicated that NK cells preactivated with IL-2/TKD might provide a novel therapeutic tool for the treatment of aggressive, Hsp70-positive pancreatic carcinoma.  相似文献   

10.
NK cells recognize and kill tumor cells and normal cells, and these play an important role in immune defense in cancer, infectious disease, and autoimmunity. NK killing is regulated by positive or negative signals derived from the interaction of surface receptors with ligands on the target cells. However, the mechanisms controlling the proliferation and maintenance of NK cells in normal human individuals are less clearly defined. In this study, using an entirely autologous system, we demonstrate that human peripheral blood CD3-CD56+, killer cell-inhibitory receptor (KIR)-expressing cells proliferate and expand in response to LPS. These responses are enhanced in the presence of anti-IL-10 receptor-blocking Abs or on the removal of CD14+ cells from the cultures. This enhancement is also reflected in substantial increases in cytolytic activity and IFN-gamma production. The negative effect of CD14+ cells may also be IL-10 mediated, IL-10 being lost from the culture supernatants of CD14-depleted PBMC and rIL-10 reversing the effect of this depletion. On the other hand, mRNA for the p35 and p40 subunits of IL-12 is still induced in CD14-depleted cultures. The expansion of CD3-CD56+ cells was also inhibited by CTLA4-Ig, indicating a role for CD80/86. B lymphocytes were not required for the expansion of CD3-CD56+ cells, whereas removal of MHC class II+ cells from CD14-depleted cultures resulted in a complete abrogation of these responses. Expansion of CD3-CD56+ cells was reconstituted in MHC class II-depleted cell cultures by adding back monocyte-derived dendritic cells. These results indicate that the responses of CD3-CD56+ NK cells to LPS may be driven by a MHC class II+ B7+ CD14- peripheral population, most likely blood dendritic cells.  相似文献   

11.
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.  相似文献   

12.

Background

Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31), endoglin (CD105) and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs) differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK) cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells.

Methodology/Principal Findings

Primary macrovascular human umbilical vein endothelial cells (HUVECs) only express UL16 binding protein 2 (ULBP2) and the major histocompatibility complex (MHC) class I chain-related protein MIC-A (MIC-A) as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70), intercellular adhesion molecule ICAM-1 (CD54) and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD) plus IL-2 (TKD/IL-2)-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54) and HLA-E expression on the former which drops to the initial low levels (below 5%) when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected.

Conclusion/Significance

These data emphasize that an irradiation-induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.  相似文献   

13.
Inflammation leads to induction of tissue stress conditions that might contribute to the generation of mechanisms limiting ongoing immune responses. We have shown previously that peptides derived from brain tissue of mice with experimental autoimmune encephalomyelitis (EAE) complexed with the chaperone heat shock protein 70 (Hsp70-pc) induce an NK-cell-dependent tolerance for subsequent EAE sensitization. We now present data that showed that the MHC class I-related glycoprotein H60 determines Hsp70-pc-induced EAE inhibition. Hsp70-pc led to significant and selective up-regulation of H60 expression in SJL/J mice, and Ab-blocking of H60 expression led to loss of EAE tolerance. Similarly, blocking of the NK cell receptor for H60, NKG2D, also reversed the Hsp70-pc-induced EAE inhibition. In contrast, in C57BL/6 mice H60 was not expressed, and Hsp70-pc-induced tolerance was not detected. The NK cell mediated Hsp70-pc-induced tolerance to EAE was dependent on modulation of dendritic cells function leading to diminished T cell reactivity to PLP. As, no increase of H60 expression on T cells from EAE mice immunized with PLP was detected, and no enhanced loss of CD3+ H60+ over CD3+ H60- cells in Hsp70-pc-induced EAE tolerance was found direct killing of H60+ PLP-reactive cells seems not to be involved in the Hsp70-pc-induced tolerance induction. We have provided evidence that Hsp70-pc-induced tolerance for EAE, mediated by NK cells, involves induction of H60 ligand and its interaction with NKG2D receptor. NK cells tolerization of EAE depends on altered dendritic cells activity leading to enhanced death of Ag reactive cells.  相似文献   

14.
The preferential growth of CD3-CD2-CD11a/CD18- thymocytes was obtained by stimulation of CD2-CD3- thymic cells with low doses of PMA (0.5 ng/ml) and subsequent culture in the presence of recombinant interleukin-2 (100 U/ml). After 2-3 weeks, CD3-CD2-CD11a/CD18- thymocytes represented 40-60% of the total proliferating cells. Highly purified CD3-CD2-CD11a/CD18- cell populations were obtained by depletion of the CD11a/CD18+ thymocytes by immunomagnetic beads. Moreover, these populations proliferated for 2-5 weeks and did not change their surface phenotype. It is of note that these cells, despite the lack of CD2 and CD11a/CD18 adhesion molecules, could bind to umbilical vein endothelial cells as efficiently as did CD3+CD2+CD11a/CD18+ thymocytes. Furthermore we demonstrate that (a) CD56 molecule is involved in the adhesion of CD3-CD2-CD11a/CD18- thymic cells, but not of peripheral CD3-CD56+ lymphocytes, to untreated or IFN-gamma- and/or TNF-alpha-treated endothelium, (b) anti-CDw49d mAb could inhibit the adhesion of this thymus-derived population to either IFN-gamma- or TNF-alpha-treated endothelial cells but not to untreated endothelium, and (c) CD56 antigen expressed by these cultured thymocytes has a sialic acid content different from that of peripheral lymphocytes. Indeed, isoelectrofocusing analysis showed that CD56 molecule expressed on CD3-CD2-CD11a/CD18- thymocytes displayed an isoelectric point (pI 5.0) different from that of CD56 antigen expressed by peripheral NK cells (pI 4.7 and 5.4). Further, we noted that CD56 antigen showed the same pI 5.8 after desialylation obtained using neuraminidase treatment. Finally, CD3-CD2-CD11a/CD18- thymocytes mobilized Ca2+ and released TNF-alpha and IFN-gamma after treatment with lectins.  相似文献   

15.
Although natural killer (NK) cells are often described as first line defence against infected or malignant cells which act without the need of prior activation, it is known now that the NK cell activity is tightly regulated by other cells and soluble factors. We show here that the stress‐inducible heat shock protein (HSP) 70 activates human NK cells to kill target cells expressing major histocompatibility complex class I chain‐related molecule A (MICA) in a natural killer group 2 member D (NKG2D‐) dependent manner. The HSP70‐derived peptide TKD (TKDNNLLGRFELSG) was able to replace the full‐length HSP70 and to exert the same function. Interestingly, the expression of the cytotoxic effector protease granzyme B in NK cells was increased after TKD stimulation. When MICA and MICB expression was induced in human tumour cells by a histone deacetylase inhibitor and NK cells were activated by HSP70 or TKD, both treatments jointly improved the killing of the tumour cells. Thus, the synergistic activity of two stress‐inducible immunological danger signals, HSP70 and MICA/B, leads to activation and enhanced cytotoxicity of human NK cells against tumour cells.  相似文献   

16.
Human triple-negative (CD4-CD8-CD3-) thymocytes purified from postnatal thymus by the use of magnetic bead columns and cell sorting were cultured in bulk or cloned with a feeder cell mixture of irradiated PBL, irradiated JY cells, and PHA. Triple-negative thymocytes proliferated well under these culture conditions, and after 12 days in bulk culture they remained triple negative. Limiting dilution experiments revealed that the frequency of clonogenic cells in fresh triple-negative thymocytes was less than 1%. Of 40 clones obtained in a representative experiment, 37 were triple negative and 3 were CD4+ TCR-alpha beta+. No TCR-gamma delta+ clones were isolated. Some of the triple-negative clones expressed CD16 and were apparently NK cells. Seven representative CD16-triple-negative clones were expanded and characterized in detail. These clones shared the common cell surface phenotype of CD1-CD2+CD3-CD4--CD8-CD5-CD7+CD16-CD56+. One of them expressed cytoplasmic CD3 delta and CD3 epsilon Ag, but these Ag were not detected in any peripheral blood-derived CD16- NK clones examined for comparison. The seven CD16- thymus-derived clones exhibited significant cytolytic activity against K562. The clone that expressed cytoplasmic CD3 Ag was shown to have the germ-line configuration of the TCR-beta and TCR-gamma genes. Thus, it is suggested that in vitro culture of triple-negative thymocytes can give rise to NK-like cells, including those that express cytoplasmic CD3 Ag. In contrast to previous reports, our results gave no evidence of differentiation of triple-negative thymocytes into TCR-alpha beta+ or TCR-gamma delta+ T cells.  相似文献   

17.
Tumor and viral antigens elicit a potent immune response by heat shock protein-dependent uptake of antigenic peptide with subsequent presentation by MHC I. Receptors on antigen-presenting cells that specifically bind and internalize a heat shock protein-peptide complex have not yet been identified. Here, we show that cells expressing CD40, a cell surface protein crucial for B cell function and autoimmunity, specifically bind and internalize human Hsp70 with bound peptide. Binding of Hsp70-peptide complex to the exoplasmic domain of CD40 is mediated by the NH(2)-terminal nucleotide-binding domain of Hsp70 in its ADP state. The Hsp70 cochaperone Hip, but not the bacterial Hsp70 homologue DnaK, competes formation of the Hsp70-CD40 complex. Binding of Hsp70-ADP to CD40 is strongly increased in the presence of Hsp70 peptide substrate, and induces signaling via p38. We suggest that CD40 is a cochaperone-like receptor mediating the uptake of exogenous Hsp70-peptide complexes by macrophages and dendritic cells.  相似文献   

18.
Cytotoxic functions and susceptibility to apoptosis are crucial aspects of NK cells suitable to counter cancer after infusion in oncologic patients. To test the feasibility and the usefulness of infusing in vitro generated NK cells, these two features were investigated in NK cells developed in vitro from CD34? hematopoietic progenitors. Purified CD34? cells were cultured for 15-30 days with FLT-3 ligand (FLT3-L) and IL-15 with or without IL-21. To induce terminal differentiation, NK cells were cultured for further 15 days with IL-15, IL-21, or their combination. A CD56(dim) /CD16? NK subset, expressing high level of perforin, granzymes, and LFA-1, appeared early in cultures with FLT3-L, IL-15, and IL-21, but it quickly died, indicating its predisposition to apoptosis. On the contrary, CD56(bright) NK cells generated after 30 days of culture with FLT3-L plus IL-15 did not show a considerable apoptosis, nevertheless only a subset of these cells expressed granzyme-B, perforin, LFA-1, and CD94-CD159a heterodimer, indicating a functional immaturity. Interestingly, further 15 days of culture with IL-21 plus IL-15 did not induce the generation of CD56(dim) cells from the CD56(bright) subset and actually inhibited IL-15-induced maturation/activation of this latter subset. In fact, IL-15 alone upregulated granzyme-B, TRAIL, Fas ligand, CD94-CD159a, LFA-1, CD16, KIRs, and TRAIL-R2 on CD56(bright) NK cells. Our results suggest that during differentiation CD56(bright) NK cells, similarly to mature activated NK cells, become highly cytotoxic and are relatively resistant to apoptosis induced by TNF family members.  相似文献   

19.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

20.
Heat shock-binding protein HspBP1 is a member of the Hsp70 co-chaperone family. The interaction between HspBP1 and the ATPase domain of the major heat shock protein Hsp70 up-regulates nucleotide exchange and reduces the affinity between Hsp70 and the peptide in its peptide-binding site. Previously we have shown that Tag7 (also known as peptidoglycan recognition protein PGRP-S), an innate immunity protein, interacts with Hsp70 to form a stable Tag7-Hsp70 complex with cytotoxic activity against some tumor cell lines. This complex can be produced in cytotoxic lymphocytes and released during interaction with tumor cells. Here the effect of HspBP1 on the cytotoxic activity of the Tag7-Hsp70 complex was examined. HspBP1 could bind not only to Hsp70, but also to Tag7. This interaction eliminated the cytotoxic activity of Tag7-Hsp70 complex and decreased the ATP concentration required to dissociate Tag7 from the peptide-binding site of Hsp70. Moreover, HspBP1 inhibited the cytotoxic activity of the Tag7-Hsp70 complex secreted by lymphocytes. HspBP1 was detected in cytotoxic CD8+ lymphocytes. This protein was released simultaneously with Tag7-Hsp70 during interaction of these lymphocytes with tumor cells. The simultaneous secretion of the cytotoxic complex with its inhibitor could be a mechanism protecting normal cells from the cytotoxic effect of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号