首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larger testes are considered the quintessential adaptation to sperm competition. However, the strong focus on testis size in evolutionary research risks ignoring other potentially adaptive features of testicular function, many of which will also be shaped by post‐mating sexual selection. Here we advocate a more integrated research programme that simultaneously takes into account the developmental machinery of spermatogenesis and the various selection pressures that act on this machinery and its products. The testis is a complex organ, and so we begin by outlining how we can think about the evolution of testicular function both in terms of the composition and spatial organisation of the testis (‘testicular histology’), as well as in terms of the logical organisation of cell division during spermatogenesis (‘testicular architecture’). We then apply these concepts to ask which aspects of testicular function we can expect to be shaped by post‐mating sexual selection. We first assess the impact of selection on those traits most strongly associated with sperm competition, namely the number and kind of sperm produced. A broad range of studies now support our contention that post‐mating sexual selection affects many aspects of testicular function besides gross testis size, for example, to maximise spermatogenic efficiency or to enable the production of particular sperm morphologies. We then broaden our focus to ask how testicular function is affected by fluctuation in sperm demand. Such fluctuation can occur over an individual's lifetime (for example due to seasonality in reproduction) and may select for particular types of testicular histology and architecture depending on the particular reproductive ecology of the species in question. Fluctuation in sperm demand also occurs over evolutionary time, due to shifts in the mating system, and this may have various consequences for testicular function, for example on rates of proliferation‐induced mutation and for dealing with intragenomic conflict. We end by suggesting additional approaches that could be applied to study testicular function, and conclude that simultaneously considering the machinery, products and scheduling of spermatogenesis will be crucial as we seek to understand more fully the evolution of this most fundamental of male reproductive traits.  相似文献   

2.
Here we analyzed Pfkfb3 and Pfkfb4 gene expression in rat testis development, isolated testicular cells and spermatozoa. Real time RT-PCR analysis during testis development showed the maximum expression of Pfkfb3 in pre-puber samples and of Pfkfb4 in adult samples. Western blot analysis showed that uPFK-2 protein, a product of Pfkfb3 gene, was present in all the cell types forming the seminiferous epithelium (Sertoli, interstitial and spermatogenic cells). In contrast, tPFK-2, a product of Pfkfb4 gene, was restricted to spermatogenic cells. Confocal analyses by indirect immunofluorescence also corroborated this expression pattern. Immunoblotting studies of isolated spermatozoa demonstrated the presence of uPFK-2 only in immature sperm and once spermatozoa became fully functional this isozyme was replaced by the testicular isozyme tPFK-2. Moreover, immunostaining confirmed that tPFK-2 was localized mainly in the acrosomal region of the sperm head and in the mid-piece of the flagellum, where other spermatogenic cell-specific glycolytic enzymes have been found.  相似文献   

3.
Teratozoospermia (ejaculation of <40% morphologically normal sperm) commonly occurs within the Felidae, including certain domestic cats, but the cellular and molecular mechanisms that give rise to this phenomenon remain unknown. This study quantified spermatogenesis to identify differential dysfunctions in teratospermic versus normospermic (>60% normal sperm/ejaculate) domestic cats. Sperm used were from electroejaculates and cauda epididymides. Testes from 10 normo- and 10 teratospermic males were obtained by castration and then evaluated by histomorphometry, flow cytometry, and testicular testosterone enzyme immunoassay. Some morphometric traits (tubular diameter, epithelium height, interstitial area, number of Leydig cells, and blood vessels per cross-section) as well as testicular testosterone concentrations were similar between groups, but testicular volume was greater in teratospermic males. Stage frequencies differed also between both cat populations, suggesting possible dysfunctions in spermiation. Quantification of cell populations in most frequent stages revealed more spermatogenic cells and fewer Sertoli cells per tubule cross-section as well as per tissue unit in teratospermic donors. Hence, the ratio of spermatogenic cells per Sertoli cell was elevated in the teratospermic cat. DNA flow cytometry confirmed higher total spermatogenic and meiotic transformations in teratospermic males. In summary, compared with normospermic counterparts, teratospermic cats have a higher sperm output achieved by more sperm-producing tissue, more germ cells per Sertoli cell, and reduced germ cell loss during spermatogenesis. Gains in sperm quantity are produced at the expense of sperm quality.  相似文献   

4.
Perinatal and juvenile oral treatment of rats with the insecticide, methoxychlor (MXC), reduced testicular size and other reproductive indices including the number of epididymal spermatozoa in those animals as adults 161. The objective was to determine if these males exposed during development had fewer Sertoli cells which might explain these testicular effects. Rat dams were gavaged with MXC at 0, 5, 50, or 150 mg x kg(-1) x day(-1) for the week before and after they gave birth. Resulting male pups (15/group) then were dosed directly from postnatal day 7 to 42. Testes were fixed in Bouin's and in OsO4, embedded in Epon and sectioned at 0.5 microm, stained with toluidine blue, and evaluated stereologically or cut at 20 microm to measure Sertoli cell nuclei with Nomarski optics. Sertoli cell number was calculated as the volume density of the nucleus times the parenchymal weight (90% of testicular weight) divided by the volume of a single Sertoli cell nucleus. Across dose groups, there were no changes in the nuclear volume density, the volume of a single nucleus, or the number of Sertoli cells per g parenchyma. There were highly significant dose-related changes in the volume of Sertoli cell nuclei per testis and the number of Sertoli cells per testis. Reduced testicular weight (r = 0.94) and reduced numbers of epididymal spermatozoa (r = 0.43) were significantly (p < 0.01) correlated to reduced number of Sertoli cells per testis. Hence, perinatal and juvenile oral exposure to MXC can reduce spermatogenic potential of males as adults by reducing their number of Sertoli cells.  相似文献   

5.
Seasonality deeply affects the physiology and behavior of many species, and must be taken into account when biological resource banks (BRBs) are established. We have studied the effect of seasonality on many reproductive parameters of free-ranging Iberian red deer, roe deer and Cantabrian chamois, living in Spain. Testicles from hunted animals were collected and sent to our laboratory at different times during the year. We recorded the weight and volume of testis, the weight of the epididymis and its separate parts (caput, corpus, and cauda), the weight of the sperm sample collected from the cauda epididymis, and several sperm parameters (sperm concentration, spermatozoa recovered, motility, HOS test reactivity, acrosomal status, and viability). We studied the data according to several periods, defined accordingly to each species. For red deer, we defined rut (mid-September to mid-October), post-rut (mid-October to mid-December), and non-breeding season (February). For roe deer, they were pre-rut (June), rut (July), post-rut (first fortnight of August), and non-breeding season (September). For chamois: non-breeding season (June to mid-September) and breeding season (October-November). The rut/breeding season yielded significantly higher numbers for almost all parameters. However, in the case of red deer, sperm quality was higher in the post-rut. For roe deer, testicular weight was similar in the pre-rut and in the rut, and sperm quality did not differ significantly between these two periods, although we noticed higher values in the rut. In the case of chamois, sperm quality did not differ significantly from the breeding season, but data distribution suggested that in the non-breeding season there are less males with sperm of good quality. On the whole, we find these results of interest for BRB planning. The best season to collect sperm in this species would be the breeding season. However, post-rut in red deer, pre-rut in roe deer, and non-breeding season in chamois could be used too, because of the acceptable sperm quality, despite the lower quantity salvaged. More in-depth research needs to be carried out on the quality of sperm salvaged at different times of the year in order to confirm these findings.  相似文献   

6.
7.
The present study investigated effects of apoptosis observed during seasonal testicular regression in Japanese Jungle Crows. The study was conducted during January to June 2008, 2009. Testes from adults captured during non-breeding (January), prebreeding (February to mid-March), main-breeding (late March to early May), transition (mid-May to late May), and post-breeding (June) seasons were analyzed. Apoptosis was assessed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Paired-testis volume increased 95-fold from the non-breeding to the main-breeding season (P < 0.05), and subsequently decreased 26-fold from the main breeding to the post-breeding season (P < 0.05). Testicular activity was evaluated from the total germ cell count and sperm index, which increased 42- and 5-fold, respectively, in the main-breeding season, and subsequently decreased 33- and 5-fold in the post-breeding season. In testes, TUNEL-positive germ cells were at low levels in the non-breeding season, absent in the prebreeding and the main-breeding seasons, and highest in mid-May (P < 0.05). In contrast, TUNEL-positive Sertoli cells occurred only in late-April. In addition, TUNEL-positive fibroblast-like cells were observed in the outer zone of the tunica albuginea in the post-breeding season. Collectively, these data suggested that the seasonal rise in the testicular competence occurred slowly in Japanese Jungle Crows; however, testis function was terminated rapidly after the breeding season. Furthermore, we concluded, similar to other avian species, Sertoli cell apoptosis followed by massive germ cell death was responsible for rapid testicular regression in Jungle Crows.  相似文献   

8.
With a view to elucidate seasonal variations in testicular spermatogenesis, quantitative analysis of spermatogenic cells was carried out in non-human primate species viz. rhesus (Macaca mulatta) and bonnet (M. radiata) monkeys during breeding (October-December) and non-breeding (May-June) seasons. The results revealed significant inhibition of testicular germ cell population during non-breeding compared with the breeding period in both the species. Quantitative determination of Sertoli cell-germ cell ratio showed a marked decrease in the number of type A-spermatogonia, spermatocytes (non-pachytene and pachytene) and spermatids (in steps 1-12 of spermiogenesis) in rhesus monkey during the non-breeding period. Bonnet monkeys exhibited the significant decline in the number of primary spermatocytes and spermatids during the non-breeding phase. In addition, average diameter of round seminiferous tubules and nuclear diameter of Leydig cells also decreased significantly in rhesus monkeys. However, bonnet monkeys did not show any significant change in nuclear diameter/morphology of Leydig cells, testicular tubular diameter and number of type A-spermatogoniae. Sertoli cell number did not show any significant change during both breeding and non-breeding periods in both the species. The results of this study indicate a prominent seasonal variation in testicular spermatogenic/Leydig cells in rhesus monkeys than those observed in bonnet monkeys.  相似文献   

9.
Blottner S  Schön J  Jewgenow K 《Theriogenology》2006,66(6-7):1593-1598
Seasonal changes in spermatogenesis were studied with respect to testicular production of both testosterone and epidermal growth factor (EGF) in mink. The testes were collected in November (n = 15; testis recrudescence), February (n = 15; before breeding season), March (n = 14; breeding season), and May (n = 11; testis involution) and the following parameters of testicular activity were quantified: testicular mass, number of testicular spermatozoa, percentages of haploid, diploid, and tetraploid (G2/M-phase) cells and content of testosterone and EGF. The growth factor was immunohistochemically localized in the parenchyma. Testis mass, spermatogenic activity, and the production of both testosterone and EGF were maximal in March, but were not significantly different from the levels in February. The correlation between testis weight and sperm per testis was r = 0.825 (P < 0.001). Testosterone and EGF levels were correlated to each other (r = 0.78; P < 0.001) and had significant positive correlations to testis mass, number of sperm and proportion of haploid cells; and negative correlations to percentages of mitotic cells. EGF was localized in interstitial cells and in the luminal region of seminiferous tubules, where it occurred during the last steps of spermiogenesis. We inferred that intensified seasonal spermatogenesis was stimulated by testosterone and by autocrine/paracrine effects of EGF.  相似文献   

10.
11.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

12.
13.
Testes from 37 Holstein bulls, 38-99 mo of age, were used to investigate the relationship of Sertoli cell number, Sertoli cell-germ cell ratios and other related factors to daily sperm production (DSP). DSP was assessed by enumeration of spermatids in testicular homogenates, whereas Sertoli cell and germ cell ratios were based on direct counts in 20 round Stage VIII seminiferous tubular cross sections per bull. Numbers of Sertoli cells were calculated as (total homogenization resistant spermatids:spermatid:Sertoli cell ratio)/0.394; the factor of 0.394 adjusted for the presence of homogenization resistant spermatids during only 39.4% of the spermatogenic cycle. Data were subjected to simple linear and second-order regression analyses. Positive linear relationships were observed between DSP and testicular parenchymal weight (p less than 0.005, R = +0.71), DSP per gram (p less than 0.005, R = +0.79), total Sertoli cells (p less than 0.005, R = +0.83), Sertoli cells per gram (p less than 0.01, R = +0.47) and the yield of Step 8 spermatids per Type A spermatogonium (p less than 0.05, R = +0.34). DSP was not related (p greater than 0.10) to the number of germ cells supported per Sertoli cell. Testicular parenchymal weight and DSP per gram were unrelated to each other (p greater than 0.10), but both were related (p less than 0.005) to the total Sertoli cell number (R = +0.61 and +0.62, respectively). Total number of Sertoli cells accounted for more of the variation in DSP between bulls (R2 = 68.2%) than did any other factor examined. It was suggested that total Sertoli cell number may be an important determinant of a bull's spermatogenic potential.  相似文献   

14.
Dolichols, linear isoprenoids essential in the biosynthesis of N-glycosylated glycoproteins, are abundant in testicular tissue. This study investigated the distribution of dolichols among testicular cell and subcellular fractions. In addition, the accumulation of dolichol within the rat testis as a function of age was investigated. Dolichol content expressed either as total dolichol/testicle or as dolichol/mg protein exhibited a marked and continuous increase between 14 and 60 days of age. The 4-, 6-, 9-, and 12-mo-old animals exhibited only minor increases in testicular dolichol content. Mean value for retired breeders was 279 ng dolichol/mg protein. Although previous studies have suggested that dolichol synthesis occurs primarily within the spermatogenic cell, elutriation-purified spermatogenic cell fractions showed very low concentrations of dolichol. Pachytene spermatocyte and round spermatid fractions contained 25.8 and 36.5 ng dolichol/mg protein, respectively. Washed epididymal sperm also had a very low dolichol content (18.8 ng dolichol/mg protein). Recovery studies during elutriation purification of spermatogenic cells showed that the majority of dolichol was contained within the Sertoli-rich tubular fragments. Microsomal fractions isolated from whole testis exhibited a small enrichment (1.6-fold) in dolichol content, whereas Golgi apparatus fractions exhibited a large (12-fold) enrichment over that of the initial homogenate. These studies suggest that, although dolichols may be synthesized within the spermatogenic cell, they accumulate within the Sertoli cell.  相似文献   

15.
Starting from the period of testis differentiation, the Sertoli cell plays a pivotal role in the development of a functional testis. FSH is the major mitotic factor for Sertoli cells. Because the supporting capacity of Sertoli cells is relatively fixed for each species, their total number per testis, established just before puberty (approximately 4 months in pigs), dictates the potential for sperm production. In contrast to Sertoli cells that are still undifferentiated, mature Leydig cells are already present at birth in pigs. Spermatogenesis lasts from 30 to 75 days in mammals, and this time period is under the control of the germ cell genotype. In boars, each spermatogenic cycle and the entire spermatogenic process lasts 8.6-9.0 and approximately 40 days, respectively. The sperm transit through the epididymis takes approximately 10 days in pigs and this is within the range cited for most mammals. Germ cell loss occurs normally during spermatogenesis, mainly during the spermatogonial and meiotic phases. In pigs, significant germ cell loss also takes place during spermiogenesis. In mammals in general, including pigs, only 2-3 out of a possible 10 spermatozoa are produced from each differentiated type A1 spermatogonium. The high supporting capacity of Sertoli cells and the short duration of the spermatogenic cycle are the main factors responsible for the comparatively high spermatogenic efficiency of pigs.  相似文献   

16.
Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility.  相似文献   

17.
Thyroid hormone inhibits neonatal Sertoli cell proliferation and recent results have shown that thyroid hormone upregulates cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 and p21Cip1 (also known as CDKN1B and CDKN1A, respectively) in neonatal Sertoli cells. This suggests that these CDKIs, which negatively regulate the cell cycle, could be critical in Sertoli cell proliferation. Consistent with this hypothesis, mice lacking p27Kip1 develop testicular organomegaly, but Sertoli cell numbers have not been determined. Likewise, effects of loss of p21Cip1 or both p27 and p21 on Sertoli cell number and testicular development were unknown. To determine if p27 and/or p21 regulate Sertoli cell proliferation, we measured Sertoli cell proliferation at Postnatal Day 16 and testis weight, Sertoli cell number, and daily sperm production (DSP) in 4-mo-old wild-type (WT), p21 knockout (p21KO), p27 knockout (p27KO), and p27/p21 double-knockout (DBKO) mice. Testis weights were increased 27%, 42%, and 86% in adult p21KO, p27KO, and DBKO mice, respectively, compared with WT. Sertoli cell number also was increased 48%, 126%, and 126% in p21KO, p27KO, and DBKO mice, respectively, versus WT. DSP in p21KO, p27KO, and DBKO testes also showed significant increases compared with WT mice. Although DSP was increased, there were increased spermatogenic defects observed in both p27KO and DBKO mice compared with WT. These data indicate that both p27 and p21 play an inhibitory role in regulating adult Sertoli cell number such that loss of either CDKI produces primary increases in Sertoli cell number and secondary increases in DSP and testis weight. Furthermore, loss of both CDKIs causes additive effects on DSP and testis weight, suggesting a central role for these CDKIs in testis development.  相似文献   

18.
Seasonal cycles of testicular activity occur in many mammals and can include transitions between total arrest and recrudescence of spermatogenesis. We hypothesize that involution and reactivation of testis result from two antagonistic processes, proliferation and programmed cell death (apoptosis), which are activated at different times. To test this hypothesis, quantitative measurements of both proliferation-specific marker and apoptotic produced nucleosomes have been compared with sperm and testosterone production in testes from adult roe deer during breeding and non-breeding seasons (May to September). Testes of brown hare were included from periods of testes regression (June to August) and recrudescence (November to December). The highest testicular weights in roe deer were found in the rutting period from late July to early August (27.25 +/- 8.56 g), corresponding with the highest number of testicular sperm/g parenchyma. The peak of sperm production coincided with a peak in testosterone concentration (1.19 +/- 0.53 microg/g testis). The maximum level of proliferation-specific marker was also found during the breeding season (98.6 +/- 58.2 U/g testis in comparison to 20.1 +/- 22.0 U/g in the prerutting period). In contrast, the most significant apoptosis was observed in the nonbreeding season than the breeding period (71.11 +/- 5.79 U/mg testis and 18.88 +/- 6.79 U/mg, respectively). Testicular proliferation was low in the brown hare (0.061 +/- 0.062 U/g) during involution of the testes. It was newly activated in November and December (0.85 +/- 0.33 U/g), preceding the increase in testicular volume. Testosterone production increased in conjunction with testicular proliferation. At this time, testicular apoptosis was significantly lower (14.16 +/- 2.12 U/mg testis) than during the period of pronounced testicular regression (30.16 +/- 19.95 U/g). These results suggest that regulation of seasonal testicular activity is characterized by an inverse relationship of proliferation and apoptosis.  相似文献   

19.
Marmosets are New World small primates phylogenetically close to humans and are commonly used in biomedical research. Although the reproductive biology of the common marmoset Callithrix jacchus is fairly well investigated, there are few data available for testis function for its close relative, Callithrix penicillata. In this regard, the present study was performed to investigate testis structure, spermatogenic cycle length, and spermatogenic and Sertoli cell efficiencies in eight captive C. penicillata. These animals received (3)H-thymidine injections and had their testes perfused-fixed with glutaraldehyde and embedded in plastic at different time periods after (3)H-thymidine injections, for histomorphometric and autoradiographic evaluation. The analysis of the different germ cell associations showed that two or more stages were observed in about 30% of the seminiferous tubule cross sections investigated. The values found for spermatogenic cycle length and for total duration of spermatogenesis in the marmoset C. penicillata, 15.4 and 69.3 days respectively, were very close to those cited in the literature for humans. However, the results observed for Sertoli cell efficiency (number of round spermatids per Sertoli cell; 8:1) and spermatogenic efficiency (daily sperm production per gram of testis; 18.4 million) were substantially higher than those observed for humans. The results found in the present investigation suggest that the black tufted-ear marmoset C. penicillata might represent an alternative and useful experimental model to perform comparative studies regarding the spermatogenic process, particularly in investigations related to the expansion of spermatogonial stem cells and the establishment of spermatogenic waves.  相似文献   

20.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号