首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radial-flow perfusion bioreactor systems have been designed and evaluated to enable direct cell seeding into a three-dimensional (3-D) porous scaffold and subsequent cell culture for in vitro tissue reconstruction. However, one of the limitations of in vitro regeneration is the tissue necrosis that occurs at the central part of the 3-D scaffold. In the present study, tubular poly-L-lactic acid (PLLA) porous scaffolds with an optimized pore size and porosity were prepared by the lyophilization method, and the effect of different perfusion conditions on cell seeding and growth were compared with those of the conventional static culture. The medium flowed radially from the lumen toward the periphery of the tubular scaffolds. It was found that cell seeding under a radial-flow perfusion condition of 1.1 mL/cm2 x min was effective, and that the optimal flow rate for cell growth was 4.0 mL/cm2 x min. At this optimal rate, the increase in seeded cells in the perfusion culture over a period of 5 days was 7.3-fold greater than that by static culture over the same period. The perfusion cell seeding resulted in a uniform distribution of cells throughout the scaffold. Subsequently, the perfusion of medium and hence the provision of nutrients and oxygen permitted growth and maintenance of the tissue throughout the scaffold. The perfusion seeding/culture system was a much more effective strategy than the conventional system in which cells are seeded under a static condition and cultured in a bioreactor such as a spinner flask.  相似文献   

2.
Shahin K  Doran PM 《PloS one》2011,6(8):e23119
Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing strategies for improving ECM retention in cartilage constructs and thus the quality of engineered tissues produced in bioreactors. Human chondrocytes seeded into polyglycolic acid (PGA) scaffolds were cultured in perfusion bioreactors for up to 5 weeks. Analysis of the size and integrity of proteoglycans in the constructs and medium showed that full-sized aggrecan was being stripped from the tissues without proteolytic degradation. Application of low (0.075 mL min(-1)) and gradually increasing (0.075-0.2 mL min(-1)) medium flow rates in the bioreactor resulted in the generation of larger constructs, a 4.0-4.4-fold increase in the percentage of GAG retained in the ECM, and a 4.8-5.2-fold increase in GAG concentration in the tissues compared with operation at 0.2 mL min(-1). GAG retention was also improved by pre-culturing seeded scaffolds in flasks for 5 days prior to bioreactor culture. In contrast, GAG retention in PGA scaffolds infused with alginate hydrogel did not vary significantly with medium flow rate or pre-culture treatment. This work demonstrates that substantial improvements in cartilage quality can be achieved using scaffold and bioreactor culture strategies that specifically target and improve ECM retention.  相似文献   

3.
Wendt D  Stroebel S  Jakob M  John GT  Martin I 《Biorheology》2006,43(3-4):481-488
In this work, we assessed whether culture of uniformly seeded chondrocytes under direct perfusion, which supplies the cells with normoxic oxygen levels, can maintain a uniform distribution of viable cells throughout porous scaffolds several milimeters in thickness, and support the development of uniform tissue grafts. An integrated bioreactor system was first developed to streamline the steps of perfusion cell seeding of porous scaffolds and perfusion culture of the cell-seeded scaffolds. Oxygen tensions in perfused constructs were monitored by in-line oxygen sensors incorporated at the construct inlet and outlet. Adult human articular chondrocytes were perfusion-seeded into 4.5 mm thick foam scaffolds at a rate of 1 mm/s. Cell-seeded foams were then either cultured statically in dishes or further cultured under perfusion at a rate of 100 microm/s for 2 weeks. Following perfusion seeding, viable cells were uniformly distributed throughout the foams. Constructs subsequently cultured statically were highly heterogeneous, with cells and matrix concentrated at the construct periphery. In contrast, constructs cultured under perfusion were highly homogeneous, with uniform distributions of cells and matrix. Oxygen tensions of the perfused medium were maintained near normoxic levels (inlet congruent with 20%, outlet > 15%) at all times of culture. We have demonstrated that perfusion culture of cells seeded uniformly within porous scaffolds, at a flow rate maintaining a homogeneous oxygen supply, supports the development of uniform engineering tissue grafts of clinically relevant thicknesses.  相似文献   

4.
In bone tissue engineering experiments, fluid-induced shear stress is able to stimulate cells to produce mineralised extracellular matrix (ECM). The application of shear stress on seeded cells can for example be achieved through bioreactors that perfuse medium through porous scaffolds. The generated mechanical environment (i.e. wall shear stress: WSS) within the scaffolds is complex due to the complexity of scaffold geometry. This complexity has so far prevented setting an optimal loading (i.e. flow rate) of the bioreactor to achieve an optimal distribution of WSS for stimulating cells to produce mineralised ECM. In this study, we demonstrate an approach combining computational fluid dynamics (CFD) and mechano-regulation theory to optimise flow rates of a perfusion bioreactor and various scaffold geometries (i.e. pore shape, porosity and pore diameter) in order to maximise shear stress induced mineralisation. The optimal flow rates, under which the highest fraction of scaffold surface area is subjected to a wall shear stress that induces mineralisation, are mainly dependent on the scaffold geometries. Nevertheless, the variation range of such optimal flow rates are within 0.5–5 mL/min (or in terms of fluid velocity: 0.166–1.66 mm/s), among different scaffolds. This approach can facilitate the determination of scaffold-dependent flow rates for bone tissue engineering experiments in vitro, avoiding performing a series of trial and error experiments.  相似文献   

5.
In tissue engineering, flow perfusion bioreactors can be used to enhance nutrient diffusion while mechanically stimulating cells to increase matrix production. The goal of this study was to design and validate a dynamic flow perfusion bioreactor for use with compliant scaffolds. Using a non-permanent staining technique, scaffold perfusion was verified for flow rates of 0.1-2.0 mL/min. Flow analysis revealed that steady, pulsatile and oscillatory flow profiles were effectively transferred from the pump to the scaffold. Compared to static culture, bioreactor culture of osteoblast-seeded collagen-GAG scaffolds led to a 27-34% decrease in cell number but stimulated an 800-1200% increase in the production of prostaglandin E(2), an early-stage bone formation marker. This validated flow perfusion bioreactor provides the basis for optimisation of bioreactor culture in tissue engineering applications.  相似文献   

6.
We developed a bioreactor for automated cell seeding of three-dimensional scaffolds by continuous perfusion of a cell suspension through the scaffold pores in oscillating directions. Using quantitative biochemical and image analysis techniques, we then evaluated the efficiency and uniformity of perfusion seeding of Polyactive foams as compared to conventional static and spinner flask methods. Finally, we assessed the efficacy of the perfusion seeding technique for different scaffolds and cell types. Perfusion seeding of chondrocytes into Polyactive foams resulted in "viable cell seeding efficiencies," defined as the percentages of initially loaded cells that were seeded and remained viable, that were significantly higher (75 +/- 6%) than those by static (57% +/- 5%) and spinner flask seeding (55% +/- 8%). In addition, as compared to static and spinner flask methods, cells seeded by perfusion were respectively 2.6-fold and 3.8-fold more uniformly distributed and formed more homogeneously sized cell clusters. Chondrocytes seeded by perfusion into Hyaff-11 nonwoven meshes were 26% and 63%, respectively, more uniformly distributed than following static and spinner flask seeding. Bone marrow stromal cells seeded by perfusion into ChronOS porous ceramics were homogeneously distributed throughout the scaffold volume, while following the static method, cells were found only near the top surface of the ceramic. In summary, we demonstrated that our cell seeding perfusion bioreactor generated constructs with remarkably uniform cell distributions at high efficiencies, and was effective for a variety of scaffolds and different mesenchymal cell types.  相似文献   

7.
During in vivo tissue regeneration, cell behavior is highly influenced by the surrounding environment. Thus, the choice of scaffold material and its microstructure is one of the fundamental steps for a successful in vitro culture. An efficacious method for scaffold fabrication should prove its versatility and the possibility of controlling micro- and nanostructure. In this paper, hyaluronic acid 3D scaffolds were developed through lamination of micropatterned membranes, fabricated after optimization of a soft-lithography method. The scaffold presented here is characterized by a homogeneous hexagonal lattice with porosity of 69%, specific surface area of 287 cm-1, and permeability of 18.9 microm2. The control over the geometry was achieved with an accuracy of 20 mum. This technique allowed not only fabrication of planar 3D scaffolds but also production of thin wall tubular constructs. Mechanical tests, performed on dry tubular scaffolds, show high rupture tensile strength. This construct could be promising not only as engineered vascular grafts but also for regeneration of skin, urethra, and intestinal walls. The biocompatibility of a 3D planar scaffold was tested by seeding human fibroblasts. The cells were cultured in both static and dynamic conditions, in a perfusion bioreactor at different flow rates. Microscope analysis and MTT test showed cell proliferation and viability and a uniform cell distribution likely due to an appropriate lattice structure.  相似文献   

8.
The paper presents a transient, continuum, two-phase model of the tissue engineering in fibrous scaffolds, including transport equations for the flowing culture medium, nutrient and cell concentration with transverse and in-plane diffusion and cell migration, a novel feature of local in-plane transport across a phenomenological pore and innovative layer-by-layer cell filling approach. The model is successfully validated for the smooth muscle cell tissue engineering of a vascular graft using crosslinked, electrospun gelatin fiber scaffolds for both static and dynamic cell culture, the latter in a dynamic bioreactor with a rotating shaft on which the tubular scaffold is attached. Parametric studies evaluate the impact of the scaffold microstructure, cell dynamics, oxygen transport, and static or dynamic conditions on the rate and extent of cell proliferation and depth of oxygen accessibility. An optimized scaffold of 75% dry porosity is proposed that can be tissue engineered into a viable and still fully oxygenated graft of the tunica media of the coronary artery within 2 days in the dynamic bioreactor. Such scaffold also matches the mechanical properties of the tunica media of the human coronary artery and the suture retention strength of a saphenous vein, often used as a coronary artery graft.  相似文献   

9.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Despite the enthusiasm for bioengineering of functional renal tissues for transplantation, many obstacles remain before the potential of this technology can be realized in a clinical setting. Viable tissue engineering strategies for the kidney require identification of the necessary cell populations, efficient scaffolds, and the 3D culture conditions to develop and support the unique architecture and physiological function of this vital organ. Our studies have previously demonstrated that decellularized sections of rhesus monkey kidneys of all age groups provide a natural extracellular matrix (ECM) with sufficient structural properties with spatial and organizational influences on human embryonic stem cell (hESC) migration and differentiation. To further explore the use of decellularized natural kidney scaffolds for renal tissue engineering, pluripotent hESC were seeded in whole- or on sections of kidney ECM and cell migration and phenotype compared with the established differentiation assays for hESC. Results of qPCR and immunohistochemical analyses demonstrated upregulation of renal lineage markers when hESC were cultured in decellularized scaffolds without cytokine or growth factor stimulation, suggesting a role for the ECM in directing renal lineage differentiation. hESC were also differentiated with growth factors and compared when seeded on renal ECM or a new biologically inert polysaccharide scaffold for further maturation. Renal lineage markers were progressively upregulated over time on both scaffolds and hESC were shown to express signature genes of renal progenitor, proximal tubule, endothelial, and collecting duct populations. These findings suggest that natural scaffolds enhance expression of renal lineage markers particularly when compared to embryoid body culture. The results of these studies show the capabilities of a novel polysaccharide scaffold to aid in defining a protocol for renal progenitor differentiation from hESC, and advance the promise of tissue engineering as a source of functional kidney tissue.  相似文献   

11.
In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from $\mu $ CT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo.  相似文献   

12.
Tissue engineering of 1- to 5-mm-thick, functional constructs based on cells that cannot tolerate hypoxia for prolonged time periods (e.g., cardiac myocytes) critically depends on our ability to seed the cells at a high and spatially uniform initial density and to maintain their viability and function. We hypothesized that rapid gel-cell inoculation in conjunction with direct medium perfusion through the seeded scaffold would increase the rate, yield, viability, and uniformity of cell seeding. Two cell types were studied: neonatal rat cardiomyocytes for feasibility studies of seeding and cultivation with direct medium perfusion, and C2C12 cells (a murine myoblast cell line) for detailed seeding studies. Cells were seeded at densities corresponding to those normally present in the adult rat heart ([0.5-1] x 10(8) cells/cm(3)), into collagen sponges (13 mm x 3 mm discs), using Matrigel as a vehicle for rapid cell delivery. Scaffolds inoculated with cell-gel suspension were seeded either in perfused cartridges with alternating medium flow or in orbitally mixed Petri dishes. The effects of seeding time (1.5 or 4.5 h), initial cell number (6 or 12 million cells per scaffold), and seeding set-up (medium perfusion at 0.5 and 1.5 mL/min; orbitally mixed dishes) were investigated using a randomized three-factor factorial experimental design with two or three levels and three replicates. The seeding cell yield was consistently high (over 80%), and it appeared to be determined by the rapid gel inoculation. The decrease in cell viability was markedly lower for perfused cartridges than for orbitally mixed dishes (e.g., 8.8 +/- 0.8% and 56.3 +/- 4%, respectively, for 12 million cells at 4.5 h post-seeding). Spatially uniform cell distributions were observed in perfused constructs, whereas cells were mainly located within a thin (100-200 microm) surface layer in dish seeded constructs. Over 7 days of cultivation, medium perfusion maintained the viability and differentiated function of cardiac myocytes, and the constructs contracted synchronously in response to electrical stimulation. Direct perfusion can thus enable seeding of hypoxia-sensitive cells at physiologically high and spatially uniform initial densities and maintain cell viability and function.  相似文献   

13.
Cell-based tissue engineering is limited by the size of cell-containing constructs that can be successfully cultured in vitro. This limit is largely a result of the slow diffusion of molecules such as oxygen into the interior of three-dimensional scaffolds in static culture. Bioreactor culture has been shown to overcome these limits. In this study we utilize a tubular perfusion system (TPS) bioreactor for the three-dimensional dynamic culture of human mesenchymal stem cells (hMSCs) in spherical alginate bead scaffolds. The goal of this study is to examine the effect of shear stress in the system and then quantify the proliferation and differentiation of hMSCs in different radial annuli of the scaffold. Shear stress was shown to have a temporal effect on hMSC osteoblastic differentiation with a strong correlation of shear stress, osteopontin, and bone morphogenic protein-2 occurring on day 21, and weaker correlation occurring at early timepoints. Further results revealed an approximate 2.5-fold increase in cell number in the inner annulus of TPS cultured constructs as compared to statically cultured constructs after 21 days. This result demonstrated a nutrient transfer limitation in static culture which can be mitigated by dynamic culture. A significant increase (P < 0.05) in mineralization in the inner and outer annuli of bioreactor cultured 4 mm scaffolds occurred on day 21 with 79 ± 29% and 53 ± 25% mineralization area, respectively, compared to 6 ± 4% and 19 ± 6% mineralization area, respectively, in inner and outer annuli of 4 mm statically cultured scaffolds. Surprising lower mineralization area was observed in 2 mm bioreactor cultured beads which had the highest levels of proliferation. These results may demonstrate a relationship between scaffold position and stem cell fate. In addition the decreased proliferation and matrix production in statically cultured scaffolds compared to bioreactor cultured constructs demonstrate the need for bioreactor systems and the effectiveness of the TPS bioreactor in promoting hMSC proliferation and differentiation in three-dimensional scaffolds.  相似文献   

14.
The requirements for engineering clinically sized cardiac constructs include medium perfusion (to maintain cell viability throughout the construct volume) and the protection of cardiac myocytes from hydrodynamic shear. To reconcile these conflicting requirements, we proposed the use of porous elastomeric scaffolds with an array of channels providing conduits for medium perfusion, and sized to provide efficient transport of oxygen to the cells, by a combination of convective flow and molecular diffusion over short distances between the channels. In this study, we investigate the conditions for perfusion seeding of channeled constructs with myocytes and endothelial cells without the gel carrier we previously used to lock the cells within the scaffold pores. We first established the flow parameters for perfusion seeding of porous elastomer scaffolds using the C2C12 myoblast line, and determined that a linear perfusion velocity of 1.0 mm/s resulted in seeding efficiency of 87% ± 26% within 2 hours. When applied to seeding of channeled scaffolds with neonatal rat cardiac myocytes, these conditions also resulted in high efficiency (77.2% ± 23.7%) of cell seeding. Uniform spatial cell distributions were obtained when scaffolds were stacked on top of one another in perfusion cartridges, effectively closing off the channels during perfusion seeding. Perfusion seeding of single scaffolds resulted in preferential cell attachment at the channel surfaces, and was employed for seeding scaffolds with rat aortic endothelial cells. We thus propose that these techniques can be utilized to engineer thick and compact cardiac constructs with parallel channels lined with endothelial cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue.  相似文献   

16.
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is 'biomimetic' in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2-4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research.  相似文献   

17.
Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity1. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes2. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia3,4. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries5,6. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation.The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS)7 for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering.  相似文献   

18.
Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynamic viscosity, bioreactor configuration, and porous scaffold microarchitecture. We have used the Lattice-Boltzmann method to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomography imaging was used to define the scaffold microarchitecture for the simulations, which produce a 3-D fluid velocity field throughout the scaffold porosity. Shear stresses were estimated at various media flow rates by multiplying the symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell culture media. The shear stress algorithm was validated by modeling flow between infinite parallel plates and comparing the calculated shear stress distribution to the analytical solution. Relating the simulation results to perfusion experiments, an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes. This modeling approach can be used to compare results obtained for different perfusion bioreactor systems or different scaffold microarchitectures and may allow specific shear stresses to be determined that optimize the amount, type, or distribution of in vitro tissue growth.  相似文献   

19.
Perfusion bioreactor systems play a crucial role in mitigating nutrient limitation as well as providing biomechanical stimuli and redistributing regulatory macromolecules that influence human mesenchymal stem cells (hMSC) fate in three‐dimensional (3D) scaffolds. As fibroblast growth factor‐2 (FGF‐2) is known to regulate hMSC phenotype, understanding the role of autocrine FGF‐2 signaling in the 3D construct under the different perfusion flow provides important insight into an optimal bioreactor design. To investigate FGF‐2 signaling inhibition in hMSC cultured in the porous poly(ethylene terephthalate) (PET) scaffolds perfused under two flow configurations, PD173074, an FGFR1 inhibitor, was added in growth media after 7 day of pre‐culture and its impact on hMSC proliferation and clonogenicity during the subsequent 7 days of cultivation was analyzed. Compared with control constructs in growth media, the addition of PD173074 resulted in significant reduction in hMSC proliferation and colony formation in both constructs with a more dramatic reduction in the parallel flow constructs. The results demonstrate that autocrine FGF‐2 plays a significant role in 3D scaffold and suggest modulation of the perfusion flow in the bioreactor as a strategy to influence autocrine actions and cell fate in the 3D scaffold. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
A pivotal requirement for the generation of vascularized tissue equivalents is the development of culture systems that provide a physiological perfusion of the vasculature and tissue-specific culture conditions. Here, we present a bioreactor system that is suitable to culture vascularized tissue equivalents covered with culture media and at the air–medium interface, which is a vital stimulus for skin tissue. For the perfusion of the vascular system a new method was integrated into the bioreactor system that creates a physiological pulsatile medium flow between 80 and 120 mmHg to the arterial inflow of the equivalent's vascular system. Human dermal microvascular endothelial cells (hDMECs) were injected into the vascular system of a biological vascularized scaffold based on a decellularized porcine jejunal segment and cultured in the bioreactor system for 14 days. Histological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining revealed that the hDMECs were able to recolonize the perfused vascular structures and expressed endothelial cell specific markers such as platelet endothelial cell adhesion molecule and von Willebrand factor. These results indicate that our bioreactor system can serve as a platform technology to generate advanced bioartificial tissues with a functional vasculature for future clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号