首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the complete biohydrogenation of dietary PUFA on both diets, whilst red clover increased the flow of C18:2n-6 and C18:3n-3 compared with grass silage. In conclusion, supplementing red clover silage-based diets with FO represents a novel nutritional strategy for enhancing the concentrations of beneficial fatty acids in ruminant milk and meat.  相似文献   

2.
A feeding experiment was conducted with 10 dairy cows of the Fleckvieh breed and the cross Red Holstein Friesian × Fleckvieh, to study whether feeding with grass silage at the morning meal and maize silage at the evening meal (treatment B: alternating forage allocation) affects forage intake and milk production, in comparison with combined feeding with these two silages at each meal (treatment A). In order to prevent a selective forage consumption in treatment A, the two silages were given as a homogeneous mixture of nearly equal portions (51.6% maize silage, 48.4% grass silage) of dry matter (DM). The experiment was of switch-back design, with the treatment sequences ABA and BAB, and three experimental periods of 6 weeks.The daily forage consumption averaged 12.3 kg DM when the silages were given as a mixture and was significantly higher than the total forage consumption of 11.8 kg DM (P < 0.05) during the alternating allocation of the silages. In treatment B, daily intake of maize silage (7.10 kg DM) was greater than that of grass silage (4.70 kg DM/day). Furthermore, variation between cows in forage intake was significantly higher in this treatment than in treatment A. Average daily milk yield for treatment A was 18.75 kg with 3.84% fat and 3.70% protein, and 18.10 kg with 3.76% fat and 3.68% protein for treatment B. Production was significantly higher (P < 0.05), by 0.65 kg milk or 0.90 kg FCM, for treatment A.  相似文献   

3.
This experiment evaluated different strategies for allocating first-cut grass silages to dry dairy cows that had low body-condition score (BCS) at drying off. A total of 48 moderately yielding Holstein-Friesian cows were used, receiving one of three dietary treatments in the dry period and a single lactation diet based on a flat-rate of concentrates and grass silage ad libitum. Throughout the dry period, one group received a low-digestibility silage (harvested 15 June 1998; LL; metabolisable energy (ME) = 10.3 MJ/kg dry matter (DM)) and a second group received a high-digestibility silage (harvested 9 May 1998, HH; ME = 11.7 MJ/kg DM). A third strategy (LH) offered the low-digestibility silage in the early dry period and the high-digestibility silage in the final 3 weeks before calving. The silages had very different crude protein concentrations (144 and 201 g/kg DM) and intakes were widely divergent (10.1 v. 13.5 kg DM/day) across the dry period. No concentrates were fed during the dry period. Silage quality had a very large effect on liveweight change, with treatment means of 0.32 and 1.75 kg/day for LL and HH, respectively. BCS changes followed a similar pattern, though no cows became over-conditioned and blood metabolites were within normal ranges. Increased silage digestibility in the late dry period led to a substantial increase in milk fat concentration and a smaller increase in milk protein concentration, the latter confined to the first full week of lactation. Depression of milk fat appears related to low blood glucose when dry cows in low body condition are fed at a low level. The LH strategy avoided the tendency for lower milk yields and fat concentration that resulted from feeding the low-digestibility silage until calving. This strategy also avoided the higher calf weights that resulted from feeding the high-digestibility silage in the early dry period.  相似文献   

4.
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.  相似文献   

5.
This experiment was conducted to investigate effects of wilting and additives on the fatty acid (FA) composition of grass silage. The crop used was timothy (Phelum pratense L., cv. Grindstad), and the additives were Proens? (formic acid and propionic acid, 60–66 g/100 g and 25–30 g/100 g, respectively), the bacterial inoculant Siloferm® Plus (Pediococcus acidilactici and Lactobacillus plantarum) and water (control). The wilted material reached a dry matter (DM) content of 336 g/kg at the first cut and 350 g/kg at the second cut. Neither wilting nor the additives had any major effect on the FA proportions, with the only differences in the concentrations of C16:0 and C18:3. Silage treated with bacterial inoculant contained a higher proportion of C16:0 (P<0.05) than silage treated with acid, and a lower (P<0.05) concentration of C18:3 than silage treated with either of the other two additives. In the silages, there were lower (P<0.05) proportions of C16:0, C18:0, C18:1 and C18:3, and higher (P<0.05) proportions of C16:1, C18:2 and other identified FAs, than in the fresh material. A wilting process shorter than 24 h, to a DM content of 330–350 g/kg, did not have any effect on the proportions of FAs in P. pratense L., cv. Grindstad. Since the different additives and wilting strategies tested in this study did not affect the proportions of FAs in silage to a major extent, the results indicate that such a process offers a robust means to avoid losses of FAs that can occur during wilting, while retaining the positive effects of wilting, such as reduced losses of nutrients through effluents.  相似文献   

6.
Eight multiparous lactating Holstein-Friesian cows were used to evaluate the partitioning of dietary nitrogen (N) from diets based on mixtures of red clover and maize silages in comparison with diets based on ryegrass silage. All cows received 4 kg/day of a standard dairy concentrate with one of four forage treatments in an incomplete changeover design with three 4-week periods. Three treatments were based on mixtures of red clover and maize silage. N intake was altered both by varying the ratio of these silages (40/60 and 25/75 on a dry matter (DM) basis) and by an additional treatment for which the DM intake of the 40/60 mixture was restricted to the level achieved with grass silage. Rumen passage rates were estimated from faecal excretion curves following a pulse oral dose of Dysprosium-labeled silage and urinary excretion of purine derivatives (PD) was used as an index of rumen microbial protein synthesis. Red clover silage mixtures led to significantly increased feed intake (21.5, 20.7 and 15.2 kg DM/day for 40/60 and 25/75 red clover/maize silage mixtures and grass silage, respectively), milk production (25.8, 27.8 and 20.0 kg/day for the same treatments, respectively) and milk component yields, but were without effect on milk fat and protein concentrations. The large increase in the yield of milk (24.5 kg/day) and milk components for the restricted red clover/maize silage treatment, in comparison with the grass silage treatment, was proportionately greater than the increase in DM intake (16.6 kg DM/day). There were no significant treatment effects on diet digestibility, while the higher intakes of red clover silage mixtures were associated with higher rumen passage rates (5.82%, 6.24% and 4.55%/h, respectively). There were significant effects of both N intake and forage source on the partitioning of dietary N between milk and urine. When dietary protein was diluted by the inclusion of maize silage, red clover silage led to increased milk N and reduced urinary N in comparison with grass silage. Improvements in N utilisation may be related to increased dietary starch and/or rumen passage rates leading to increased microbial protein synthesis for these treatments. Urinary excretion of PD was significantly higher for all diets based on mixtures of red clover and maize silages, in comparison with grass silage. Urinary N output was close to literature predictions based on N intake for the diet based on ryegrass silage, but 40 to 80 g/day (25% to 30%) less than predicted for the diets based on the mixtures of red clover and maize silages.  相似文献   

7.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

8.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

9.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

10.
The effects of concentrate energy source on feed intake and rumen fermentation parameters of lactating dairy cattle, offered one of three grass silages differing in fermentation and intake characteristics, were evaluated in a partially balanced changeover design experiment involving four rumen fistulated dairy cows. Three silages were harvested using different management practices prior to and at ensiling. Silages A and C and silage B were harvested from primary or secondary regrowths either untreated or treated with a bacterial inoculant. For silages A, B and C, dry matter (DM) concentrations were 334, 197 and 183 g/kg (S.E. 3.1), pH values 4.00, 4.79 and 4.80 (S.E. 0.042) and ammonia nitrogen (N) concentrations were 123, 319 and 295 g/kg total N (S.E. 20.0), respectively. Two concentrates were formulated to contain similar crude protein, effective rumen degradable protein, digestible undegradable protein and metabolisable energy concentrations but using different carbohydrate sources to achieve a wide range of starch concentrations. For the low and high starch concentrates starch concentrations were 17 and 304 g/kg DM and acid detergent fibre concentrations were 170 and 80 g/kg DM, respectively. The silages were offered ad libitum, supplemented with 10 kg fresh concentrate daily. For silages A, B and C, DM intakes were 10.9, 7.2 and 8.6 kg/day and concentrate energy sources did not alter (P>0.05) intake. Increasing the level of starch in the concentrate decreased the molar concentration of acetate (P<0.05) and tended to increase the molar concentration of propionate (P<0.1). Silage type altered the molar concentration of acetate (P<0.01) and the acetate:propionate ratio (P<0.05). There were no silagetype×concentrate interactions (P>0.05) on silage intake or rumen fermentation parameters. It is concluded that when concentrate and silage form equal proportions of the diet, the composition of the silage has an over-riding influence on rumen fermentation parameters. Furthermore, the changes in milk fat concentration, observed in a concurrent production study, due to changes in silage and concentrate types can be accounted for by changes in the ratio of lipogenic to glucogenic precursors in the rumen fluid.  相似文献   

11.
A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live-weight gain, the reduced dressing proportion resulted in no beneficial effect on carcass gain, probably due to increased food intakes of lower digestible forage increasing gut fill. Meat quality or carcass composition were not altered by the inclusion of maize or whole-crop silages in grass silage based diets.  相似文献   

12.
The loss of phosphates from dairy farms contributes to the eutrophication of waterways. Whilst reducing the phosphorus (P) content of dairy cow diets has the potential to help reduce phosphate losses, diets containing inadequate dietary P may have a negative effect on cow health and performance. To address this issue, 100 winter-calving Holstein-Friesian dairy cows were offered diets containing either 'high' or 'low' levels of dietary P. The experiment was conducted over a 4-year period, with 80 primiparous cows commencing the study in year 1, while a further 20 primiparous cows commenced the study in year 2. Rations offered during the winter comprised grass silage, maize silage (70 : 30 dry matter (DM) basis, approximately) and concentrates (10.0 to 12.0 kg/cow per day). During the summer periods in years 1 and 2, half of the cows grazed both day and night, while the remaining cows grazed by day, and were housed by night and offered grass silage. During years 3 and 4, all cows grazed both day and night during the summer period. Concentrate feed levels during the summer periods were 3.0 to 4.0 kg/cow per day. Different dietary P levels were achieved by offering concentrates containing either high or low P levels during the winter period (approximately 7.0 or 4.4 g P/kg DM respectively), and during the summer period (approximately 6.8 or 3.6 g P/kg DM, respectively). Total ration P levels averaged 4.9 and 3.6 g P/kg DM for the 'high' and 'low' P winter diets respectively, and 4.2 and 3.6 g P/kg DM for the 'high' and 'low' P summer diets respectively. A total of 95, 70, 50 and 22 cows completed each of lactations 1 to 4 respectively. Dietary P level had no significant effect on food intake, milk output or milk composition (P > 0.05). Plasma P concentrations were significantly lower with cows offered the 'low' P diet in each of lactations 1 to 4 (P < 0.05). In each of lactations 3 and 4, cows offered the 'low' P diet tended to have lower condition scores and live weights than those offered the 'high' P diet. The results of this experiment highlight that the P content of dairy cow diets can be substantially reduced with no detrimental effect on dairy cow performance.  相似文献   

13.
This study investigated the performance and instrumental meat quality of finishing beef steers offered grass silage (GS), grass silage:maize silage (GS:MS) and grass silage:lupins/triticale silage (GS:LT). The lupins/triticale silage was grown as either two separate crops in the same field and harvested together (LT1) or grown and harvested as a mixture (LT2). The silages were offered to eighty continental cross beef steers, initial live weight 530 ± 47.7 kg and 18 ± 1.6 months of age and were supplemented with 3 or 6 kg concentrates fresh/head/d. Silage was fed ad libitum with the mixtures offered at a ratio of 60 GS:40 maize silage (MS), LT1 or LT2 on a dry matter (DM) basis and concentrates were offered once (3 kg) or twice (6 kg) daily on top of the silage. Animals were slaughtered in three batches after 100, 117 and 124 d on experiment. The LT1 and LT2 produced yields of 8.7 and 7.5 kg DM/ha and the silages were poorly fermented as demonstrated by high ammonia-N concentration (182 and 173 g/kg total N), low lactic acid (9 g/kg DM) and high pH (5.0 and 4.7). Silage type had no significant effect on slaughter live weight, liveweight gain, carcass gain, forage DM intake (DMI), total DMI or feed efficiency expressed as kg DMI/kg liveweight gain or kg DMI/kg carcass gain. Silage type had no effect on carcass characteristics or instrumental meat quality. The results of this study demonstrate that offering lupins/triticale silage in combination with high quality grass silage (D-value greater than 700) at a ratio of 60 grass silage:40 LT1 or LT2 on a DM basis had no effect on animal performance, carcass characteristics or meat quality parameters relative to high quality grass silage offered alone or in combination with maize silage.  相似文献   

14.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

15.
Polyphenol oxidase (PPO) in red clover (RC) has been shown to reduce both lipolysis and proteolysis in silo and implicated (in vitro) in the rumen. However, all in vivo comparisons have compared RC with other forages, typically with lower levels of PPO, which brings in other confounding factors as to the cause for the greater protection of dietary nitrogen (N) and C18 polyunsaturated fatty acids (PUFA) on RC silage. This study compared two RC silages which when ensiled had contrasting PPO activities (RC+ and RC−) against a control of perennial ryegrass silage (PRG) to ascertain the effect of PPO activity on dietary N digestibility and PUFA biohydrogenation. Two studies were performed the first to investigate rumen and duodenal flow with six Hereford×Friesian steers, prepared with rumen and duodenal cannulae, and the second investigating whole tract N balance using six Holstein-Friesian non-lactating dairy cows. All diets were offered at a restricted level based on animal live weight with each experiment consisting of two 3×3 Latin squares using big bale silages ensiled in 2010 and 2011, respectively. For the first experiment digesta flow at the duodenum was estimated using a dual-phase marker system with ytterbium acetate and chromium ethylenediaminetetraacetic acid as particulate and liquid phase markers, respectively. Total N intake was higher on the RC silages in both experiments and higher on RC− than RC+. Rumen ammonia-N reflected intake with ammonia-N per unit of N intake lower on RC+ than RC−. Microbial N duodenal flow was comparable across all silage diets with non-microbial N higher on RC than the PRG with no difference between RC+ and RC−, even when reported on a N intake basis. C18 PUFA biohydrogenation was lower on RC silage diets than PRG but with no difference between RC+ and RC−. The N balance trial showed a greater retention of N on RC+ over RC−; however, this response is likely related to the difference in N intake over any PPO driven protection. The lack of difference between RC silages, despite contrasting levels of PPO, may reflect a similar level of protein-bound-phenol complexing determined in each RC silage. Previously this complexing has been associated with PPOs protection mechanism; however, this study has shown that protection is not related to total PPO activity.  相似文献   

16.
The effect of the rate of increase in concentrate allowance after calving with two concentrate mixes (A and B) differing in composition was evaluated using 64 Finnish Ayrshire cows during the first 100 days of lactation. After calving, the concentrate allowance of multiparous cows was increased stepwise from 4 to 17 kg/day, and of primiparous cows from 3 to 13.5 kg/day over 12 days (F rate of increase; multiparous 1.08 kg/day, primiparous 0.88 kg/day) or 24 days (S rate of increase; mutiparous 0.54 kg/day, primiparous 0.44 kg/day). The concentrates were formulated to have similar crude protein and metabolizable energy concentrations but differing starch and NDF concentrations. For concentrate A the starch and NDF concentrations were 421 and 167 g/kg dry matter (DM) and for concentrate B 258 and 251 g/kg DM. All cows received grass silage ad libitum. The higher concentrate intake during weeks 1 to 4 of lactation with F compared with the S rate of increase caused higher DM, energy and protein intake. The higher concentrate intake for F than for S treatment in early lactation did not cause a large decrease in silage intake (8.8 v. 8.3 kg DM/day). The intake of concentrate A and B after calving did not differ for S treatment. However, for F treatment the intake of fibrous concentrate B increased faster than starch-rich concentrate A during weeks 1 to 4 of lactation. The concentrate composition had no effect on energy-corrected milk (ECM) yield during weeks 1 to 4 of lactation for S treatments, but with F treatments the cows fed B concentrate produced more milk. The F rate of increase in concentrate allowance compared with the S rate increased the calculated energy balance after calving. The rate of increase in concentrate feeding post partum or concentrate composition had no effect on DM, energy or protein intake during the whole 100-day experiment. The average ECM yield over days 1 to 100 of lactation was higher for S than for F treatments and tended to be higher with concentrate B than A. Results of this study showed that by the fast rate of increase in concentrate allowance after calving on a grass silage diet, it was possible to improve the energy status of the cows in early lactation. This had, however, no effect on production later in lactation.  相似文献   

17.
Twenty-eight Simmental-cross steers weighing 200 (± 20.5) kg were used to evaluate grass and whole plant lupin silages in terms of growth rate, dry matter (DM) intake and carcass characteristics. The chemical composition of the silages was determined and Dacron bag procedures were used to estimate DM and protein degradability. The silages were supplemented with either rolled barley or crushed potato. The lupin silage had a lactic acid fermentation with lower DM, neutral detergent fiber (NDF) and protein nitrogen than the grass silage but higher crude protein. There were no statistically significant differences in gain, carcass weight, dressing percentage or backfat levels between steers fed lupin or grass silage. DM intake of the silages was not significantly different but there was a tendency for lower DM intake of lupin silage when supplemented with potatoes. There was no difference in DM degradability between lupin and grass silages. Lupin nitrogen degraded at a significantly faster rate (24.5% h−1) compared with the grass (10.4% h−1). The effective degradation of nitrogen at a ruminal fractional outflow rate of 0.05 h−1 was 63.8% and 79.1% for grass and lupin silage, respectively. Ensiling whole plant lupin can produce a high quality silage for use in beef rations.  相似文献   

18.
An evaluation of the factors affecting silage dry-matter intake (SDMI) of dairy cows was conducted based on dietary treatment means. The data were divided into six subsets based on the silage treatments used in the experiments: concentration of digestible organic matter in dry matter (D-value) influenced by the maturity of grass ensiled (n = 81), fermentation quality influenced by silage additives (n = 240), dry matter (DM) concentration influenced by wilting of grass prior to ensiling (W; n = 85), comparison of silages made from primary growth or regrowth of grass (n = 46), and replacement of grass silage with legume (L; n = 53) or fermented whole-crop cereal (WC; n = 37) silages. The data were subjected to the mixed model regression analysis. Both silage D-value and fermentation quality significantly affected SDMI. The average effects of D-value and total acid (TA) concentration were 17.0 g and − 12.8 per 1 g/kg DM, respectively. At a given D-value, silage neutral-detergent fibre (NDF) concentration tended to decrease SDMI. Silage TA concentration was the best fermentation parameter predicting SDMI. Adding other parameters into the multivariate models did not improve the fit and the slopes of the other parameters remained insignificant. Total NDF intake was curvilinearly related to silage D-value the maximum intake being reached at a D-value of 640 g/kg DM. Results imply that physical fill is not limiting SDMI of highly digestible grass silages and that both physical and metabolic factors constrain total DM intake in an interactive manner. Silage DM concentration had an independent curvilinear effect on SDMI. Replacing primary growth silage with regrowth, L or WC silages affected SDMI significantly, the response to regrowth silage being linearly decreasing and to L and WC quadratically increasing. The outcome of factors affecting SDMI was used to update the relative SDMI index as follows: SDMI index = 100+10 × [(D-value − 680) × 0.0170 − (TA − 80) × 0.0128+(0.0198 ×  (DM − 250) − 0.00002364 × (DM2 − 250 2)) − 0.44 × a+4.13 × b − 2.58 × b2+5.90 × c − 6.14 × c2 − 0.0023 × (550 − NDF)], where a, b and c represent the proportions (0–1) of regrowth, L or WC silages from total silage DM. For the whole data set, one index unit corresponded to the default value of 0.10 kg in SDMI. The SDMI index explained proportionally 0.852 of the variation in SDMI with 0.34 kg DM per day residual. The updated SDMI index provides improved basis for the practical dairy cow ration formulation and economic evaluation.  相似文献   

19.
In order to determine the effect of dietary vitamin E level and basal diet on vitamin E status, performance and tissue fatty acid content, five groups of eight Suffolk × Charollais wether lambs with an initial live weight of 28.4 (s.d. 1.6) kg were allocated to one of five concentrate-based diets supplemented with all-rac-α-tocopheryl acetate to contain 30 mg (C-30), 60 mg (C-60), 120 mg (C-120), 250 mg (C-250) or 500 mg (C-500) α-tocopheryl acetate/kg dry matter (DM), for 63 days. Two additional groups of eight lambs entered the study at 31.2 (s.d. 3.3) kg and were fed grass silage and 400 g/day concentrate for 56 days, with the whole diet providing the equivalent of 60 mg (S-60) or 500 mg (S-500) α-tocopheryl acetate/kg DM. Lambs were weighed and blood samples obtained by venipuncture weekly. Dietary vitamin E level did not affect performance (P > 0.05), but lambs fed grass silage grew more slowly (P < 0.001) and had a higher (P < 0.001) feed conversion ratio (kg feed/kg gain) than those fed concentrates. At day 0 plasma α-tocopherol concentrations were 0.8 μg/ml and did not differ between treatments (P > 0.05). Plasma α-tocopherol concentrations then decreased in all lambs except for those fed S-500, which increased, and at slaughter were (μg/ml) 0.07, 0.23, 0.39, 0.76 and 1.57 in C-30, C-60, C-120, C-250 and C-500 and 1.18 and 1.93 in S-60 and S-500, respectively. At slaughter, muscle and liver α-tocopherol concentrations were in the deficiency range for lambs fed C-30, C-60 or C-120, whereas plasma creatine kinase and tissue polyunsaturated fatty acids were unaffected by dietary vitamin E level, but creatine kinase levels were higher (P < 0.05) and glutathione peroxidise levels lower (P < 0.001) in lambs fed grass silage than concentrates alone. Muscle and liver α-tocopherol concentrations were 1.8- and 4.1-fold higher in lambs fed S-60 than C-60, but there was less of a difference between lambs fed S-500 or C-500 with muscle and liver differences of 0.4- and 0.7-fold, respectively. Tissue n-3 polyunsaturated fatty acid concentrations were higher (P < 0.05) and n-6 fatty acids lower in lambs receiving the grass silage compared to concentrate-based diets, but were not affected by dietary vitamin E level. It is concluded that lower plasma and tissue levels of α-tocopherol are present in lambs supplemented with all-rac-α-tocopheryl acetate on a concentrate compared to a mixed diet of silage and concentrates, and that normal growth can be achieved at tissue levels previously considered to represent deficiency.  相似文献   

20.
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号