首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kennison JA 《Genetics》1981,98(3):529-548
Cytological and genetic analyses of 121 translocations between the Y chromosome and the centric heterochromatin of the X chromosome have been used to define and localize six regions on the Y chromosome of Drosophila melanogaster necessary for male fertility. These regions are associated with nonfluorescent blocks of the Y chromosome, as revealed using Hoechst 33258 or quinacrine staining. Each region appears to contain but one functional unit, as defined by failure of complementation among translocations with breakpoints within the same block. The distribution of translocation breakpoints examined appears to be nonrandom, in that breaks occur preferentially in the nonfluorescent blocks and not in the large fluorescent blocks.  相似文献   

2.
Ring Chromosomes and rDNA Magnification in Drosophila   总被引:4,自引:0,他引:4       下载免费PDF全文
Tartof showed that ribosomal gene magnification in Drosophila was inhibited in a ring X chromosome. The present studies extend this observation by showing that ring X chromosomes are lost meiotically in male Drosophila undergoing ribosomal gene magnification as evidenced by the recovery of a lower number of ring-bearing progeny under magnifying conditions compared with nonmagnifying conditions. Associated with ring chromosome loss is a highly significant increase in the number of double-sized dicentric ring chromosomes in meiotic cells from magnifying males. These observations explain the failure of ring X chromosomes to magnify and imply that magnification in rod chromosomes occurs via a mechanism of unequal sister chromatid exchange. Our results support the hypothesis that the primary event of magnification is a sister chromatid exchange in the rDNA, that the frequency of sister strand exchanges is increased in magnifying flies, that a significant number of exchanges in magnifying flies occurs meiotically and that some of the exchanges are nonreciprocal. We have also found that autosomal mutations can affect both the frequency of abnormal ring structures and the ability of ring X chromosomes to magnify.  相似文献   

3.
Baldev K. Vig 《Genetics》1982,102(4):795-806
The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres.  相似文献   

4.
Healing of Broken Linear Dicentric Chromosomes in Yeast   总被引:31,自引:8,他引:23       下载免费PDF全文
In yeast, meiotic recombination between a linear chromosome III and a haploid-viable circular chromosome will yield a dicentric, tandemly duplicated chromosome. Spores containing apparently intact dicentric chromosomes were recovered from tetrads with three viable spores. The spore containing the dicentric inherited URA3 (part of the recombinant DNA used to join regions near the ends of the chromosome into a circle) as well as HML, HMR and MAL2 (located near the two ends of a linear but deleted from the circle). The Ura+ Mal+ colonies were highly variegated, giving rise to as many as seven distinctly different stable ("healed") derivatives, some of which were Ura+ Mal +, others Ura+ Mal- and others Ura - Mal+. The colonies were also sectored for five markers (HIS4, LEU2, CRY1, MAT and THR4) initially heterozygous in the tandemly duplicated dicentric chromosome.—Southern blot and genetic analyses have demonstrated that these stable derivatives arose from mitotic break-age of the dicentric chromosome, followed by one of several different healing events. The majority of the stable derivatives contained circular or linear chromosomes apparently resulting from homologous recombination between a broken chromosome end and a homologous region on the other end of the original dicentric duplicated chromosome. A smaller proportion of events resulted in apparently uniquely healed linear chromosomes in which the broken chromosome acquired a new telomere. In two instances we recovered chromosome III partially duplicated with a novel right end. We have also found one derivative that had also experienced rearrangement of repeated DNA sequences found adjacent to yeast telomeres.  相似文献   

5.
Region 20 of the polytene X chromosome of Drosophila melanogaster was studied in salivary glands (SG) and pseudonurse cells (PNC) of otu mutants. In SG chromosomes the morphology of the region strongly depends on two modifiers of position effect variegation: temperature and amount of heterochromatin. It is banded in XYY males at 25°?C and β-heterochromatic in X0 males at 14°?C, i.e. it shows dynamic transitions. In PNC chromosomes region 20 is not heterochromatic, but demonstrates a clear banding pattern. Some molecular markers of mitotic heterochromatin were localized by means of in situ hybridization on PNC chromosomes: DNA of the gene su(f) in section 20C, the nucleolar organizer and 359-bp satellite in 20F. The 359-bp satellite, which has been considered to be specific for heterochromatin of the mitotic X chromosome, was found at two additional sites on chromosome 3L, proximally to 80C. The right arm of the X chromosome in SG chromosomes was localized in the inversion In(1LR)pn2b: the telomeric HeT-A DNA and AAGAG satellite from the right arm are polytenized, having been relocated from heterochromatin to euchromatin.  相似文献   

6.
The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.  相似文献   

7.
Lowden MR  Meier B  Lee TW  Hall J  Ahmed S 《Genetics》2008,180(2):741-754
Critically shortened telomeres can be subjected to DNA repair events that generate end-to-end chromosome fusions. The resulting dicentric chromosomes can enter breakage–fusion–bridge cycles, thereby impeding elucidation of the structures of the initial fusion events and a mechanistic understanding of their genesis. Current models for the molecular basis of fusion of critically shortened, uncapped telomeres rely on PCR assays that typically capture fusion breakpoints created by direct ligation of chromosome ends. Here we use independent approaches that rely on distinctive features of Caenorhabditis elegans to study the frequency of direct end-to-end chromosome fusion in telomerase mutants: (1) holocentric chromosomes that allow for genetic isolation of stable end-to-end fusions and (2) unique subtelomeric sequences that allow for thorough PCR analysis of samples of genomic DNA harboring multiple end-to-end fusions. Surprisingly, only a minority of end-to-end fusion events resulted from direct end joining with no additional genome rearrangements. We also demonstrate that deficiency for the C. elegans Ku DNA repair heterodimer does not affect telomere length or cause synthetic effects in the absence of telomerase.  相似文献   

8.
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms.  相似文献   

9.
10.

Background

The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability

Methodology/Principal Findings

The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.

Conclusions/Significance

HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.  相似文献   

11.
Y Z Zheng  R R Roseman  W R Carlson 《Genetics》1999,153(3):1435-1444
The B chromosome of maize has been used in a study of dicentric chromosomes. TB-9Sb is a translocation between the B and chromosome 9. The B-9 of TB-9Sb carries 60% of the short arm of 9. For construction of dicentrics, a modified B-9 chromosome was used, B-9-Dp9. It consists of the B-9 chromosome plus a duplicated 9S region attached to the distal end. In meiosis, fold-back pairing and crossing over in the duplicated region gives a chromatid-type dicentric B-9 that subsequently initiates a chromatid-type breakage-fusion-bridge cycle. In the male, it forms a single bridge in anaphase II of meiosis and at the first pollen mitosis. However, the cycle is interrupted by nondisjunction of the B centromere at the second pollen mitosis, which sends the B-9 dicentric to one pole and converts it from a chromatid dicentric to a chromosome dicentric. As expected, the new dicentric undergoes the chromosome-type breakage-fusion-bridge cycle and produces double bridges. A large number of plants with chromosome dicentrics were produced in this way. The presence of double bridges in the root cells of plants with a chromosome dicentric was studied during the first 10 wk of development. It was found that the number of plants and cells showing double bridges declined steadily over the 10-wk period. Several lines of evidence indicate that there was no specific developmental time for dicentric loss. "Healing" of broken chromosomes produced by dicentric breakage accounted for much of the dicentric loss. Healing produced a wide range of derived B-9 chromosomes, some large and some small. A group of minichromosomes found in these experiments probably represents the small end of the scale for B-9 derivatives.  相似文献   

12.
Lifschytz E 《Genetics》1978,88(3):457-467
Genetic organization at the base of the X chromosome was studied through the analysis of X-ray-induced deficiencies. Deficiencies were recovered so as to have a preselected right end "anchored" in the centric heterochromatin to the right of the su(f) locus. "Free" ends of deficiencies occurred at any of 22 intervals in Section 20 and in the proximal portion of Section 19 of Bridges' (1938) polytene chromosome map. The distribution of 130 such free ends of deficiencies induced in normal, In(1)sc 8, and In(1)wm4 chromosomes suggests that on the single section level, genes are flanked by "hot" or "cold" sites for X-ray-induced breaks, and that occurrence of the hot spots is dependent on their interaction with the fixed-end sites in the centric heterochromatin. In the light of these results, it is argued that long heterochromatic sequences separate the relatively few genes in Section 20, and thus endow it with several characteristics typical of heterochromatic regions. Section 20 is considered to be a transition region between the mostly heterochromatic and mostly euchromatic regions of the X chromosome; the differences between them are suggested as being merely quantitative.  相似文献   

13.
K Ahmad  K G Golic 《Genetics》1998,148(2):775-792
We investigated the fate of dicentric chromosomes in the mitotic divisions of Drosophila melanogaster. We constructed chromosomes that were not required for viability and that carried P elements with inverted repeats of the target sites (FRTs) for the FLP site-specific recombinase. FLP-mediated unequal sister-chromatid exchange between inverted FRTs produced dicentric chromosomes at a high rate. The fate of the dicentric chromosome was evaluated in the mitotic cells of the male germline. We found that dicentric chromosomes break in mitosis, and the broken fragments can be transmitted. Some of these chromosome fragments exhibit dominant semilethality. Nonlethal fragments were broken at many sites along the chromosome, but the semilethal fragments were all broken near the original site of sister-chromatid fusion, and retained P element sequences near their termini. We discuss the implications of the recovery and behavior of broken chromosomes for checkpoints that detect double-strand break damage and the functions of telomeres in Drosophila.  相似文献   

14.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

15.
When a dicentric chromosome breaks in mitosis, the broken ends cannot be repaired by normal mechanisms that join two broken ends since each end is in a separate daughter cell. However, in the male germline of Drosophila melanogaster, a broken end may be healed by de novo telomere addition. We find that Chk2 (encoded by lok) and P53, major mediators of the DNA damage response, have strong and opposite influences on the transmission of broken-and-healed chromosomes: lok mutants exhibit a large increase in the recovery of healed chromosomes relative to wildtype control males, but p53 mutants show a strong reduction. This contrasts with the soma, where mutations in lok and p53 have the nearly identical effect of allowing survival and proliferation of cells with irreparable DNA damage. Examination of testes revealed a transient depletion of germline cells after dicentric chromosome induction in the wildtype controls, and further showed that P53 is required for the germline to recover. Although lok mutant males transmit healed chromosomes at a high rate, broken chromosome ends can also persist through spermatogonial divisions without healing in lok mutants, giving rise to frequent dicentric bridges in Meiosis II. Cytological and genetic analyses show that spermatid nuclei derived from such meiotic divisions are eliminated during spermiogenesis, resulting in strong meiotic drive. We conclude that the primary responsibility for maintaining genome integrity in the male germline lies with Chk2, and that P53 is required to reconstitute the germline when cells are eliminated owing to unrepaired DNA damage.  相似文献   

16.
In Drosophila melanogaster X chromosome heterochromatin (Xh) constitutes the proximal 40% of the X chromosome DNA and contains a number of genetic elements with homologous sites on the Y chromosome, one of which is well defined, namely, the bobbed locus, the repetitive structural locus for the 18S and 28S rRNAs. This report presents the localisation of specific repeated DNA sequences within Xh and the employment of this sequence map in constructing new chromosomes to analyse the nature of the heterochromatin surrounding the rDNA region. Repeated sequences were located relative to inversion breakpoints which differentiate Xh cytogenetically. When the rDNA region was manipulated to be in a position in the chromosome so that it was without the Xh which normally surrounds it, the following obser-vations were made, (i) The rDNA region of Xh is intrinsically hetero-chromatic, remaining genetically active and yet possessing major heterochromatic properties even in the absence of the flanking heterochromatin regions, (ii) The size of the deletion removing the portion of Xh normally located distal to the rDNA region affected the dominance relationship between the X and Y nucleolar organizers (activity/endoreduplication assayed in male salivary glands). The X rDNA without any flanking heterochromatin was dominant over Y rDNA while the presence of some Xh allowed both the X and Y rDNA to be utilized, (iii) Enhancement of the position effect variegation on the white locus was demonstrated to occur as a result of the Xh deletions generated. EMS mutagenesis studies argue that the regions of Xh flanking the rDNA region contain no vital loci despite the fact that they strongly effect gene expression in some genotypes. This is consistent with early studies using X-ray mutagenesis (Lindsley et al., 1960). The pleiotropic effects of deleting specific regions of Xh is discussed in relation to the possible influence of heterochromatin on the organisation of the functional interphase nucleus.  相似文献   

17.
Sites of intercalary heterochromatin (IH) in the complete set of Drosophila melanogaster polytene chromosomes were localized and studied according to the following criteria: tendency to break (weak points), ectopic pairing and late replication, the existence of repeats (in X and 2R) including those enriched with A-T bases. Correlation between these features investigated, the highest correlation coefficients found between weak point behavior, late replication, and ectopic pairing. The frequency of breaks in weak points in some IH bands was shown to be different in different tissues, strains and closely related Drosophila species. Sexual differences in morphology and manifestation of IH features were found in bands of the X chromosome: weak point behavior and participation in ectopic pairing of IH bands are an order of magnitude less frequent in male X chromosomes than in female X chromosomes. In autosomes such differences have not been observed. IH bands in male X chromosomes look more massive than the homologous ones in female X chromosomes: the DNA content of the 11A6-9 region is four times less in females than in males. The hypothesis is proposed that the specific features of intercalary heterochromatin bands are determined by tandem repetitiveness and late replication. The latter, if it occurs in a cluster of repetitions, could cause incomplete polytenization of the region and, as a consequence, breaks (or weak points) and the appearance of adhesive ends which may take part either in realization of ectopic contacts or in fixation of those occurring previously. Breaks caused by chromosome aberrations in regions with repeats may not result in a sharp decline of viability, so that break points of chromosome rearrangements in intercalary heterochromatin may be more frequent than in other regions.  相似文献   

18.
An autosomal euchromatic maternal-effect mutant, abo (= abnormal oocyte), interacts with, or regulates the activity of, the heterochromatin of the sex chromosomes of Drosophila melanogaster. It is shown that this interaction or regulation with the X chromosome involves a specific heterochromatic locus or small region that maps to the distal penultimate one-eighth of the basal X-chromosome heterochromatic segment.  相似文献   

19.
In tissue cultures of male Microtus agrestis, diploid mitoses with two X or two Y chromosomes were found. For identifiying the sex chromosomes in nonhypotonioally treated mitoses, the asynchrony of DNA replication of the sex chromosomes of both sexes was used. The constitutive heterochromatin of Y replicates later in the S period than X, and X2 of the female replicates later than X1. Autoradiographic studies of tetraploid tripolar mitoses showed that the diploid daughter nuclei contain either XX or YY in the male; in the female, X1X2 daughter nuclei were found less frequently than X1X1 and X2X2 cells.  相似文献   

20.
McKee B 《Genetics》1987,116(3):409-413
Males carrying certain X-4 translocations exhibit strongly skewed sperm recovery ratios. The XP4D half of the translocation disjoins regularly from the Y chromosome and the 4PXD half disjoins regularly from the normal 4. Yet the smaller member of each bivalent is recovered in excess of its pairing partner, apparently due to differential gametic lethality. Chromosome recovery probabilities are multiplicative; the viability of each genotype is the product of the recovery probability of its component chromosomes. Meiotic drive can also be caused by deficiency for X heterochromatin. In(1)sc4Lsc8R males show the same size dependent chromosome recoveries and multiplicative recovery probabilities found in T(1;4)BS males. Meiotic drive in In(1)sc4Lsc8R males has been shown to be due to X-Y pairing failure. Although pairing is regular in the T(X;4) males, the striking phenotypic parallels suggest a common explanation. The experiments described below show that the two phenomena are, in fact, one and the same. X-4 translocations are shown to have the same effect on recovery of independently assorting chromosomes as does In(1)sc4Lsc8R. Addition of pairing sites to the 4PXD half of the translocation eliminates drive. A common explanation—failure of the distal euchromatic portion of the X chromosome to participate in X:Y meiotic pairing—is suggested as the cause for drive. The effect of X chromosome breakpoint on X-4 translocation induced meiotic drive is investigated. It is found that translocations with breakpoints distal to 13C on the salivary map do not cause drive while translocations broken proximal to 13C cause drive. The level of drive is related to the position of the breakpoint—the more proximal the breakpoint the greater the drive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号