首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA.  相似文献   

3.
In the era of metagenomics and diagnostics sequencing, the importance of protein comparison methods of boosted performance cannot be overstated. Here we present PSimScan (Protein Similarity Scanner), a flexible open source protein similarity search tool which provides a significant gain in speed compared to BLASTP at the price of controlled sensitivity loss. The PSimScan algorithm introduces a number of novel performance optimization methods that can be further used by the community to improve the speed and lower hardware requirements of bioinformatics software. The optimization starts at the lookup table construction, then the initial lookup table–based hits are passed through a pipeline of filtering and aggregation routines of increasing computational complexity. The first step in this pipeline is a novel algorithm that builds and selects ‘similarity zones’ aggregated from neighboring matches on small arrays of adjacent diagonals. PSimScan performs 5 to 100 times faster than the standard NCBI BLASTP, depending on chosen parameters, and runs on commodity hardware. Its sensitivity and selectivity at the slowest settings are comparable to the NCBI BLASTP’s and decrease with the increase of speed, yet stay at the levels reasonable for many tasks. PSimScan is most advantageous when used on large collections of query sequences. Comparing the entire proteome of Streptocuccus pneumoniae (2,042 proteins) to the NCBI’s non-redundant protein database of 16,971,855 records takes 6.5 hours on a moderately powerful PC, while the same task with the NCBI BLASTP takes over 66 hours. We describe innovations in the PSimScan algorithm in considerable detail to encourage bioinformaticians to improve on the tool and to use the innovations in their own software development.  相似文献   

4.
Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape opti-mization problem.  相似文献   

5.
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.  相似文献   

6.
7.
Grid computing uses distributed interconnected computers and resources collectively to achieve higher performance computing and resource sharing. Task scheduling is one of the core steps to efficiently exploit the capabilities of Grid environment. Recently, heuristic algorithms have been successfully applied to solve task scheduling on computational Grids. In this paper, Gravitational Search Algorithm (GSA), as one of the latest population-based metaheuristic algorithms, is used for task scheduling on computational Grids. The proposed method employs GSA to find the best solution with the minimum makespan and flowtime. We evaluate this approach with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) method. The results demonstrate that the benefit of the GSA is its speed of convergence and the capability to obtain feasible schedules.  相似文献   

8.
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.  相似文献   

9.
In this paper, a randomized numerical approach is used to obtain approximate solutions for a class of nonlinear Fredholm integral equations of the second kind. The proposed approach contains two steps: at first, we define a discretized form of the integral equation by quadrature formula methods and solution of this discretized form converges to the exact solution of the integral equation by considering some conditions on the kernel of the integral equation. And then we convert the problem to an optimal control problem by introducing an artificial control function. Following that, in the next step, solution of the discretized form is approximated by a kind of Monte Carlo (MC) random search algorithm. Finally, some examples are given to show the efficiency of the proposed approach.  相似文献   

10.
Abstract

The genetic algorithm is a technique of function optimization derived from the principles of evolutionary theory. We have adapted it to perform conformational search on polypeptides and proteins. The algorithm was first tested on several small polypeptides and the 46 amino acid protein crambin under the AMBER potential energy function. The probable global minimum conformations of the polypeptides were located 90% of the time and a non-native conformation of crambin was located that was 150kcal/mol lower in potential energy than the minimized crystal structure conformation. Next, we used a knowledge-based potential function to predict the structures of melittin, pancreatic polypeptide, and crambin. A 2.31 Å ΔRMS conformation of melittin and a 5.33 Å ΔRMS conformation of pancreatic polypeptide were located by genetic algorithm-based conformational search under the knowledge-based potential function. Although the ΔRMS of pancreatic polypeptide was somewhat high, most of the secondary structure was correct. The secondary structure of crambin was predicted correctly, but the potential failed to promote packing interactions. Finally, we tested the packing aspects of our potential function by attempting to predict the tertiary structure of cytochrome b 562 given correct secondary structure as a constraint. The final predicted conformation of cytochrome b 562 was an almost completely extended continuous helix which indicated that the knowledge-based potential was useless for tertiary structure prediction. This work serves as a warning against testing potential functions designed for tertiary structure prediction on small proteins.  相似文献   

11.
12.
13.
The population migration algorithm (PMA) is a simulation of a population of the intelligent algorithm. Given the prematurity and low precision of PMA, this paper introduces a local search mechanism of the leap-frog algorithm and crossover operator to improve the PMA search speed and global convergence properties. The typical test function verifies the improved algorithm through its performance. Compared with the improved population migration and other intelligential algorithms, the result shows that the convergence rate of the improved PMA is very high and its convergence is proved.  相似文献   

14.
15.
Abstract

An algorithm is described for generation of the long sequence written in a four letter alphabet from the constituent k-tuple words in the minimal number of separate, randomly defined fragments of the starting sequence. It is primarily intended for use in sequencing by hybridization (SBH) process- a potential method for sequencing human genome DNA (Drmanac et al., Genomics 4, pp. 114–128, 1989). The algorithm is based on the formerly defined rules and informative entities of the linear sequence.

The algorithm requires neither knowledge on the number of appearances of a given k-tuple in sequence fragments, nor the information on which k-tuple words are on the ends of a fragment. It operates with the mixed content of k-tuples of the various lengths. The concept of the algorithm enables operations with the k-tuple sets containing false positive and false negative k-tuples. The content of the false k-tuples primarily affects the completeness of the generated sequence, and its correctness in the specific cases only. The algorithm can be used for the optimization of SBH parameters in the simulation experiments, as well as for the sequence generation in the real SBH experiments on the genomic DNA.  相似文献   

16.
17.
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.  相似文献   

18.
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.  相似文献   

19.
Genome-wide association studies (GWAS) yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s)-trait(s) associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS) to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS). Despite the relatively small size of GHS (n = 3,175), when compared with the largest published meta-GWAS (n>100,000), GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify associated variants. This provides a powerful tool for the analysis of diverse genomic features, for instance including gene expression and exome sequencing data, where complex dependencies are present in the predictor space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号