首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate‐driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar‐built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low‐plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate‐driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar‐built estuaries have transitioned from lotic (flowing‐water) to lentic (still‐water) habitats, where the low‐plated allele is favoured. The low‐plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate‐driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.  相似文献   

2.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

3.
Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three‐spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low‐plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North‐western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta‐analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.  相似文献   

4.
Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic‐ or benthic‐like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild‐caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild‐caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions.  相似文献   

5.
The threespine stickleback (Gasterosteus aculeatus) is primitively an anadromous or resident marine species but has repeatedly colonized fresh water, where predictable phenotypic divergence usually occurs rapidly. A conspicuous element of this divergence is change of the number and position of lateral armor plates from about 33 that cover the entire flank (complete) to <10 anterior plates (low). This difference is caused primarily by variation at the Ectodysplasin (Eda) locus. The low Eda allele appears to be rarer in two geographically adjacent anadromous populations from Cook Inlet, Alaska than in most marine or anadromous populations reported from elsewhere, and there is no evidence of elevated gene flow for Eda between anadromous and resident lake threespine stickleback populations that breed in sympatry. However, the two anadromous populations are divergent for the frequencies of two complete Eda alleles. It is not clear how monomorphic low-plated freshwater populations in Cook Inlet have almost invariably acquired ancestral low Eda alleles from anadromous ancestors in which this allele appears to be extremely rare.  相似文献   

6.
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best‐studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser‐known freshwater “species pair” found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co‐occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third “mixed” morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.  相似文献   

7.
Species interactions, and their fitness consequences, vary across the geographic range of a coevolutionary relationship. This spatial heterogeneity in reciprocal selection is predicted to generate a geographic mosaic of local adaptation, wherein coevolutionary traits are phenotypically variable from one location to the next. Under this framework, allopatric populations should lack variation in coevolutionary traits due to the absence of reciprocal selection. We examine phenotypic variation in tetrodotoxin (TTX) toxicity of the Rough‐Skinned Newt (Taricha granulosa) in regions of allopatry with its TTX‐resistant predator, the Common Garter Snake (Thamnophis sirtalis). In sympatry, geographic patterns of phenotypic exaggeration in toxicity and toxin‐resistance are closely correlated in prey and predator, implying that reciprocal selection drives phenotypic variation in coevolutionary traits. Therefore, in allopatry with TTX‐resistant predators, we expect to find uniformly low levels of newt toxicity. We characterized TTX toxicity in northwestern North America, including the Alaskan panhandle where Ta. granulosa occur in allopatry with Th. sirtalis. First, we used microsatellite markers to estimate population genetic structure and determine if any phenotypic variation in toxicity might be explained by historical divergence. We found northern populations of Ta. granulosa generally lacked population structure in a pattern consistent with northern range expansion after the Pleistocene. Next, we chose a cluster of sites in Alaska, which uniformly lacked genetic divergence, to test for phenotypic divergence in toxicity. As predicted, overall levels of newt toxicity were low; however, we also detected unexpected among‐ and within‐population variation in toxicity. Most notably, a small number of individuals contained large doses of TTX that rival means of toxic populations in sympatry with Th. sirtalis. Phenotypic variation in toxicity, despite limited neutral genetic divergence, suggests that factors other than reciprocal selection with Th. sirtalis likely contribute to geographic patterns of toxicity in Ta. granulosa.  相似文献   

8.
The central assumption of evolutionary theory is that natural selection drives the adaptation of populations to local environmental conditions, resulting in the evolution of adaptive phenotypes. The three‐spined stickleback (Gasterosteus aculeatus) displays remarkable phenotypic variation, offering an unusually tractable model for understanding the ecological mechanisms underpinning adaptive evolutionary change. Using populations on North Uist, Scotland we investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. Dissolved calcium was a significant predictor of plate and spine morph, while predator abundance was not. Stickleback latency to emerge from a refuge varied with morph, with populations with highly reduced plates and spines and high predation risk less bold. Our findings support strong directional selection in three‐spined stickleback evolution, driven by multiple selective agents.  相似文献   

9.
Intraguild predation is a common ecological interaction that occurs when a species preys upon another species with which it competes. The interaction is potentially a mechanism of divergence between intraguild prey (IG‐prey) populations, but it is unknown if cases of character shifts in IG‐prey are an environmental or evolutionary response. We investigated the genetic basis and inducibility of character shifts in threespine stickleback from lakes with and without prickly sculpin, a benthic intraguild predator (IG‐predator). Wild populations of stickleback sympatric with sculpin repeatedly show greater defensive armor and water column height preference. We laboratory‐raised stickleback from lakes with and without sculpin, as well as marine stickleback, and found that differences between populations in armor, body shape, and behavior persisted in a common garden. Within the common garden, we raised stickleback half‐families from multiple populations in the presence and absence of sculpin. Although the presence of sculpin induced trait changes in the marine stickleback, we did not observe an induced response in the freshwater stickleback. Behavioral and morphological trait differences between freshwater populations thus have a genetic basis and suggest an evolutionary response to intraguild predation.  相似文献   

10.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

11.
Gene flow is widely thought to homogenize spatially separate populations, eroding effects of divergent selection. The resulting theory of ‘migration–selection balance’ is predicated on a common assumption that all genotypes are equally prone to dispersal. If instead certain genotypes are disproportionately likely to disperse, then migration can actually promote population divergence. For example, previous work has shown that threespine stickleback (Gasterosteus aculeatus) differ in their propensity to move up‐ or downstream (‘rheotactic response’), which may facilitate genetic divergence between adjoining lake and stream populations of stickleback. Here, we demonstrate that intraspecific variation in a sensory system (superficial neuromast lines) contributes to this variation in swimming behaviour in stickleback. First, we show that intact neuromasts are necessary for a typical rheotactic response. Next, we showed that there is heritable variation in the number of neuromasts and that stickleback with more neuromasts are more likely to move downstream. Variation in pectoral fin shape contributes to additional variation in rheotactic response. These results illustrate how within‐population quantitative variation in sensory and locomotor traits can influence dispersal behaviour, thereby biasing dispersal between habitats and favouring population divergence.  相似文献   

12.
Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’ daily dispersal neighborhood where gene flow is expected to be strong.  相似文献   

13.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

14.
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions.  相似文献   

15.
There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three‐spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype–environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point.  相似文献   

16.
Understanding the genetic basis of traits involved in adaptive divergence and speciation is one of the most fundamental objectives in evolutionary biology. Toward that end, we look for signatures of extreme plate loss in the genome of freshwater threespine sticklebacks (Gasterosteus aculeatus). Plateless stickleback have been found in only a few lakes and streams across the world; they represent the far extreme of a phenotypic continuum (plate number) that has been studied for years, although plateless individuals have not yet been the subject of much investigation. We use a dense single nucleotide polymorphism dataset made using RADseq to study fish from three freshwater populations containing plateless and low plated individuals, as well as fish from full plated marine populations. Analyses were performed using FastStructure, sliding windows FST, Bayescan and latent factor mixed models to search for genomic differences between the low plated and plateless phenotypes both within and among the three lakes. At least 18 genomic regions which may contribute to within‐morph plate number variation were detected in our low plated stickleback populations. We see no evidence of a selective sweep between low and plateless fish; rather reduction of plate number within the low plated morph seems to be polygenic.  相似文献   

17.
Timing of maturation is an important life‐history trait that is likely to be subjected to strong natural selection. Although population differences in timing of maturation have been frequently reported in studies of wild animal populations, little is known about the genetic basis of this differentiation. Here, we investigated population and sex differences in timing of maturation within and between two nine‐spined stickleback (Pungitius pungitius) populations in a laboratory breeding experiment. We found that fish from the high‐predation marine population matured earlier than fish from the low‐predation pond population and males matured earlier than females. Timing of maturation in both reciprocal hybrid crosses between the two populations was similar to that in the marine population, suggesting that early timing of maturation is a dominant trait, whereas delayed timing of maturation in the pond is a recessive trait. Thus, the observed population divergence is suggestive of strong natural selection against early maturation in the piscine‐predator‐free pond population.  相似文献   

18.
Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments.  相似文献   

19.
Morphometric differentiation among freshwater fish populations is a commonplace occurrence, although the underlying causes for this divergence often remain elusive. We analysed the degree and patterns of morphological differentiation among nine freshwater three‐spined stickleback (Gasterosteus aculeatus) populations inhabiting isolated karst rivers of the Adriatic Sea basin, to characterise the phenotypic diversity and differentiation in these populations. The analyses revealed marked and significant morphometric differentiation – especially in traits related to predator defence amongst most populations – even among those located within close geographic proximity in the same catchment system. Accordingly, the degree of morphometric and neutral genetic differentiation, as assessed from variability in 15 microsatellite loci from a parallel study, were uncorrelated across the populations. However, PST/FST comparisons revealed that the degree of phenotypic differentiation (PST) among populations exceeded that to be expected from genetic drift alone, suggesting a possible adaptive basis for the observed differentiation. In fact, avian predation pressure and several physiochemical environmental variables were identified as the main putative drivers of the observed differentiation, particularly in the dorsal spines, ascending process and lateral plates. Hence, the high degree of morphometric differentiation among Adriatic three‐spined stickleback populations appears to reflect adaptation to local ecological conditions. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 219–240.  相似文献   

20.
The three‐spined stickleback Gasterosteus aculeatus is a model species for studying questions in ecology and evolution. The rapid diversification of G. aculeatus in post‐glacial freshwater environments, combined with recently developed molecular tools, provides a unique opportunity to study the functional basis of fitness variation in natural populations. In derived freshwater populations, a number of morphological traits have diverged in parallel from the marine ancestral state, including the number of lateral armour plates. Evolution of reduced armour in freshwater populations is due to positive selection from both abiotic and biotic mechanisms. The major effect gene (ectodysplasin‐A or Eda), along with several minor effect genetic regions, has recently been shown to control lateral plate variation. Field experiments have further determined the fitness consequences of allelic variation at the major effect locus. This work helps elucidate the mechanisms connecting genetic variation with phenotypic variation and fitness in the wild, a synthesis that should be applicable to many other phenotypic traits and species of fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号