首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

2.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

3.
Aims Sex allocation in plants is often plastic, enabling individuals to adjust to variable environments. However, the predicted male-biased sex allocation in response to low resource conditions has rarely been experimentally tested in hermaphroditic plants. In particular, it is unknown whether distal flowers in linear inflorescences show a larger shift to male allocation relative to basal flowers when resources are reduced. In this study, we measure position-dependent plasticity of floral sex allocation within racemes of Aconitum gymnandrum in response to reduced resource availability.Methods Using a defoliation treatment in the field applied to potted plants from a nested half-sibling design, we examined the effects of the treatment, flower position, family and their interactions.Important findings Allocation to male function increased with more distal flower position, while female allocation either did not change with position or declined at the most distal flowers. Defoliation significantly reduced the mass of both the androecium and gynoecium, but not anther number or carpel number. Gynoecial mass declined more strongly with defoliation than did androecial mass, resulting in a significant increase in the androecium/gynoecium ratio as predicted by sex allocation theory. Plastic responses of androecium mass and gynoecium mass were affected by flower position, with less mass lost in basal flowers, but similar plastic magnitude in both sexual traits across flower position lead to consistent variation in the androecium/gynoecium ratio along the inflorescence. A significant treatment*paternal family interaction for the androecium/gynoecium ratio is evidence for additive genetic variation for plastic floral sex allocation, which means that further evolution of allocation can occur.  相似文献   

4.
Recent theoretical work has shown that haplodiploid cyclical parthenogens, such as rotifers, are expected to have an equal frequency of male‐producing and resting‐egg producing females during their sexual phase. We tested this prediction by following sexual reproduction dynamics in two laboratory populations and one field population of the rotifer Brachionus plicatilis through two growing seasons. We recorded population density, proportion of sexual females, and sex allocation (the proportion of male‐producing sexual females as a fraction of total sexual females). We found this sex allocation ratio to vary from 0.3 to 1.0 in single sampling events. However, when we computed sex allocation by using the integrated densities of both male‐producing sexual females and resting‐egg producing sexual females over time, the two laboratory populations and one of the two field growing seasons showed sex allocation ratios that did not significantly differ from the expected value of 0.5.  相似文献   

5.
Abstract.  1. In haplodiploid organisms, virgin or sperm-depleted females can reproduce but are constrained to produce only male progeny. According to Godfray's constrained model, when p , the proportion of females constrained to produce only male progeny, is not null in a panmictic population, unconstrained females should bias their sex allocation towards females to compensate for the excess of males. These unconstrained females should be able to adjust the sex ratio in response to local variation of p .
2. In this paper an experimental approach is used to test the hypotheses of this model in the solitary endoparasitoid Venturia canescens under both field and laboratory conditions. Specifically, it is tested whether unconstrained females use their encounters with conspecifics (either male or female) to estimate p and then adjust their sex ratio accordingly.
3. As assumed by Godfray's model, constrained females actively search for host patches in the field and under laboratory conditions produce the same number of offspring during their lifetime as unconstrained females. As predicted by the model, unconstrained females produce a sex ratio biased towards females both in the laboratory and in the field.
4. The results show that this bias is not a response to encounters with conspecifics previous to oviposition. The hypothesis that the bias is due to differential mortality between sexes during ontogeny is also rejected. The proportions of constrained ovipositions estimated in two natural populations explain only a small fraction of the sex ratio bias observed in V. canescens.  相似文献   

6.
The costs and benefits of polyandry are central to understanding the near-ubiquity of female multiple mating. Here, we present evidence of a novel cost of polyandry: disrupted sex allocation. In Nasonia vitripennis, a species that is monandrous in the wild but engages in polyandry under laboratory culture conditions, sexual harassment during oviposition results in increased production of sons under conditions that favour female-biased sex ratios. In addition, females more likely to re-mate under harassment produce the least female-biased sex ratios, and these females are unable to mitigate this cost by increasing offspring production. Our results therefore argue that polyandry does not serve to mitigate the costs of harassment (convenience polyandry) in Nasonia. Furthermore, because males benefit from female-biased offspring sex ratios, harassment of ovipositing females also creates a novel cost of that harassment for males.  相似文献   

7.
Insect reproduction is influenced by various external factors including temperature, a well-studied constraint. We investigated to what extent different levels of sperm limitation of males exposed to different heat stresses (34 and 36℃) afFect fem ales' offspring production and sex allocation in Nasonia vitripennis. In this haplodiploid parasitoid wasp attacking different species of pest flies, we investigated the effect of the quantity of sperm females received and stored in their spermatheca on their sperm use decisions, hence sex allocation, over successive ovipositions. In particular, we compared the sex allocation of females presenting three levels of sperm limitation (i.e.,mated with control, 34 ℃ heat-stressed or 36℃heat-stressed males) on each host they parasitized. To disentangle the potential reduction of sperm quality after a heat stress exposure from that of sperm quantity, we also explored the clutch size and sex ratio produced by fem ales that were partially sperm limited after copulating with multiply mated males. Independently of their sperm numbers, all types of fem ales produced a similar total number of offspring, but the more limited ones had fewer daughters. Sperm limitation further affected the distribution of daughters' production across time.In addition to constraints acting on female physiology, male fertility should therefore be considered in studies measuring reproductive outputs of insects submitted to heat stresses.  相似文献   

8.
Split sex ratios in the social Hymenoptera: a meta-analysis   总被引:1,自引:0,他引:1  
The study of sex allocation in social Hymenoptera (ants, bees,and wasps) provides an excellent opportunity for testing kin-selectiontheory and studying conflict resolution. A queen–workerconflict over sex allocation is expected because workers aremore related to sisters than to brothers, whereas queens areequally related to daughters and sons. If workers fully controlsex allocation, split sex ratio theory predicts that colonieswith relatively high or low relatedness asymmetry (the relatednessof workers to females divided by the relatedness of workersto males) should specialize in females or males, respectively.We performed a meta-analysis to assess the magnitude of adaptivesex allocation biasing by workers and degree of support forsplit sex ratio theory in the social Hymenoptera. Overall, variationin relatedness asymmetry (due to mate number or queen replacement)and variation in queen number (which also affects relatednessasymmetry in some conditions) explained 20.9% and 5% of thevariance in sex allocation among colonies, respectively. Theseresults show that workers often bias colony sex allocation intheir favor as predicted by split sex ratio theory, even iftheir control is incomplete and a large part of the variationamong colonies has other causes. The explanatory power of splitsex ratio theory was close to that of local mate competitionand local resource competition in the few species of socialHymenoptera where these factors apply. Hence, three of the mostsuccessful theories explaining quantitative variation in sexallocation are based on kin selection.  相似文献   

9.
A model for sex allocation is presented where mothers have differing abilities to assess their arrival order at a patch in low-density populations. Mothers either oviposit with no knowledge, some knowledge, or they know their arrival order exactly. Furthermore they deposit single eggs in patches hence all matings within a patch are between unrelated individuals. The male offspring however, are also able to mate with females from male-less patches through dispersal. Whereas the first model predicted sex ratios of equality, the models incorporating knowledge both predicted female biased sex ratios. This is shown to be due to an asymmetry in mating opportunities that we have termed random asymmetrical mate competition (RAMC) that only knowledgeable females are able to use to their advantage. Data from the out-breeding non-pollinating fig wasp Otitesella pseudoserrata, suggests that these mothers do have knowledge of their arrival orders and supports the concept and predictions of RAMC.  相似文献   

10.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

11.
When males provide females with resources at mating, they can become the limiting sex in reproduction, in extreme cases leading to the reversal of typical courtship roles. The evolution of male provisioning is thought to be driven by male reproductive competition and selection for female fecundity enhancement. We used experimental evolution under male‐ or female‐biased sex ratios and limited or unlimited food regimes to investigate the relative roles of these routes to male provisioning in a sex role‐reversed beetle, Megabruchidius tonkineus, where males provide females with nutritious ejaculates. Males evolving under male‐biased sex ratios transferred larger ejaculates than did males from female‐biased populations, demonstrating a sizeable role for reproductive competition in the evolution of male provisioning. Although larger ejaculates elevated female lifetime offspring production, we found little evidence of selection for larger ejaculates via fecundity enhancement: males evolving under resource‐limited and unlimited conditions did not differ in mean ejaculate size. Resource limitation did, however, affect the evolution of conditional ejaculate allocation. Our results suggest that the resource provisioning that underpins sex role reversal in this system is the result of male–male reproductive competition rather than of direct selection for males to enhance female fecundity.  相似文献   

12.
Resources, sex ratio, and seed production by hermaphrodites covary among natural populations of many gynodioecious plant species, such that they are functionally "more dioecious" as resources become more limiting. Strong correlations among these three factors confound our understanding of their relative roles in maintaining polymorphic sexual systems. We manipulated resource availability and sex ratio and measured their effects on relative fertility and phenotypic selection through the maternal fitness of females and hermaphrodites of Fragaria virginiana. Two results were particularly surprising. First, hermaphrodites showed little variability in fecundity across resource treatments and showed strong positive and context-dependent selection for fruit set. This suggests that variation in hermaphrodite seed production along resource gradients in nature may result from adaptation rather than plasticity. Second, although females increased their fecundity with higher resources, their fertility was unaffected by sex ratio, which is predicted to mediate pollen limitation of females in natural populations where they are common. Selection on petal size of females was also weak, indicating a minimal effect of pollinator attraction on variation in the fertility of female plants. Hence, we found no mechanistic explanation for the complete absence of high-resource high female populations in nature. Despite strong selection for increased fruit set of hermaphrodites, both the strength of selection and its contribution to the maintenance of gynodioecy are severely reduced under conditions where females have high relative fecundity (i.e., low resources and high-female sex ratios). High relative fertility plus high female frequency means that the evolution of phenotypic traits in hermaphrodites (i.e., response to selection via seed function) should be manifested through females because most hermaphrodites will have female mothers. Fruit set was never under strong selection in females; hence, selection to increase fruit set hermaphrodites will be less effective in maintaining their fruiting ability in natural populations with low resources and high female frequency. In sum, both sex ratio and resource availability influence trait evolution indirectly-through their effects on relative fertility of the sexes and patterns of selection. Sex ratio did not impose strong pollen limitation on females but did directly moderate the outcome of natural selection by biasing the maternal sex of the next generation. This direct effect of sex ratio on the manifestation of natural selection is expected to have far greater impact on the evolution of traits, such as seed-producing ability in hermaphrodites and the maintenance of sexual polymorphisms in nature, compared to indirect effects of sex ratio on relative fertility of the sexes.  相似文献   

13.
The influence of operational sex ratio on the mating behavior of female field crickets,Gryllus pennsylvanicus, was investigated. Females were predicted to be more discriminating under conditions of high mate availability and show less selectivity when males were rare. Such selectivity was indicated in this study with the proportion of courtships leading to a mating changing with sex ratio. Females accepted almost 70% of all courtships at the female-biased sex ratio, but only about half of all courtships were successful at even or male-biased sex ratios. Females moved least at the female-biased sex ratio. There was also a trend for females to be guarded more under male-biased conditions. Female weight did not influence any of the behaviors examined.  相似文献   

14.
Haplodiploid sex determination allows unmated females to produce sons. Consequently, a scarcity of males may lead to a significant proportion of females remaining unmated, which may in turn give rise to a surfeit of males in the following generation. Stable oscillation of the sex ratio has been predicted by classic models, and it remains a puzzle as to why this is not observed in natural populations. Here, I investigate the dynamics of sex allocation over ecological and evolutionary timescales to assess the potential for sustained oscillation. I find that, whilst stable oscillation of the sex ratio is possible, the scope for such dynamical behavior is reduced if sex allocation strategies are evolutionary labile, especially if mated females may facultatively adjust their sex allocation according to the present availability of mating partners. My model, taken together with empirical estimates of female unmatedness in haplodiploid taxa, suggests that sustained oscillation of the sex ratio is implausible in natural populations. However, this phenomenon may be relevant to artificially introduced biological control agents.  相似文献   

15.
Sex allocation theory predicts females will adaptively manipulate sex ratios to maximize their progeny's reproductive value. Recently, the generality of biased sex allocation in birds has been questioned by meta-analytic reviews, which demonstrate that many previously reported significant results may simply reflect sampling error. Here, we utilize a robust sample size and powerful statistical approach to determine whether parental quality is correlated with biased sex allocation in red-capped robins. Indices of maternal quality (including interactive effects of age and condition) were strongly related to sex allocation. These relationships were in the predicted directions, with larger effect sizes than those of previous studies in this field. There were also paternal correlates, involving age and the source of paternity. We propose that biased sex allocation occurs in this species, and is maintained by differing production costs of each sex and genetic benefits to females of producing sons when fertilized by high-quality males.  相似文献   

16.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair.  相似文献   

17.
In cooperatively breeding species, the fitness consequences of producing sons or daughters depend upon the fitness impacts of positive (repayment hypothesis) and negative (local competition hypothesis) social interactions among relatives. In this study, we examine brood sex allocation in relation to the predictions of both the repayment and the local competition hypotheses in the cooperatively breeding long-tailed tit Aegithalos caudatus. At the population level, we found that annual brood sex ratio was negatively related to the number of male survivors across years, as predicted by the local competition hypothesis. At an individual level, in contrast to predictions of the repayment hypothesis, there was no evidence for facultative control of brood sex ratio. However, immigrant females produced a greater proportion of sons than resident females, a result consistent with both hypotheses. We conclude that female long-tailed tits make adaptive decisions about brood sex allocation.  相似文献   

18.
Frequency‐dependent selection is a fundamental principle of adaptive sex ratio evolution in all sex ratio theories but has rarely been detected in the wild. Through long‐term censuses, we confirmed large fluctuations in the population sex ratio of the aphid Prociphilus oriens and detected frequency‐dependent selection acting on these fluctuations. Fluctuations in the population sex ratio were partly attributable to climatic factors during the growing season. Climatic factors likely affected the growth conditions of host plants, which in turn led to yearly fluctuations in maternal conditions and sex ratios. In the process of frequency‐dependent selection, female proportion higher or lower than ca. 60% was associated with a reduction or increase in female proportion, respectively, the next year. The rearing of aphid clones in the laboratory indicated that mothers of each clone produced an increasing number of females as maternal size increased. However, the mean male number was not related to maternal size, but varied largely among clones. Given genetic variance in the ability to produce males among clones, selection should favour clones that can produce more numerous males in years with a high female proportion. Population‐level sex allocation to females was on average 71%–73% for three localities and more female‐biased when maternal conditions were better. This tendency was accounted for by the hypothesis of competition among foundresses rather than the hypothesis of local mate competition. We conclude that despite consistent operation of frequency‐dependent selection, the sex ratio continues to fluctuate because environmental conditions always push it away from equilibrium.  相似文献   

19.
Parasitoid females are known to preferentially allocate female eggs to hosts with the higher resource value, usually leading to oviposition of female eggs in larger hosts and male eggs in smaller hosts. For koinobiont parasitoids, if male and female hosts are of equal size at time of oviposition, but differ in size in later developmental stages, the sex of the host could be used to indicate future resource value. Using parasitoids of the braconid genus Asobara, which are larval parasitoids of Drosophila, it is shown that parasitoids emerging from female hosts are larger than those from male hosts. Given this difference in resource value, ovipositing females should preferentially allocate female eggs to female hosts. An alternative strategy would be to decrease the difference in resource value between male and female hosts by castrating male hosts. The primary sex ratio of A. tabida in their two main host species does not differ between male and female hosts. In contrast to A. tabida, A. citri is known to partially castrate male hosts, but this does not decrease the size difference between male and female hosts. As in A. tabida, there is no difference in sex allocation to male and female hosts in A. citri. Despite the clear difference between the resource value of male and female hosts, these parasitoid species do not seem to make optimal use of this difference. They may not be able to discriminate between host sexes or, alternatively, there is a presently unknown fitness disadvantage to ovipositing in female hosts.  相似文献   

20.
Body size, host choice and sex allocation in a spider-hunting pompilid wasp   总被引:1,自引:0,他引:1  
Two important relationships in parasitoid evolutionary ecology are those between adult size and fitness and between host quality and sex ratio. Sexually differential size–fitness relationships underlie predicted sex-ratio relationships. Despite each relationship receiving considerable attention, they have seldom been studied simultaneously or using field data. Here we report the biology of Anoplius viaticus paganu s Dahlbom, a little known parasitoid of spiders, using field and laboratory data. We found that larger foraging females were able to select larger host spiders from the field, thus identifying a relatively novel component of the size–fitness relationship. Larger offspring developed from larger hosts and, in agreement with the prediction of the host quality model of sex allocation, were generally female. Data on the size–fitness relationship for males are lacking and, in common with many prior studies, we could not evaluate sexually differential size–fitness relationships as an explanation for the observed sex-ratio patterns. Nonetheless, A. v. paganu s exhibited one of the strongest relationships between host size and offspring sex ratio yet reported.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 285–296.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号