首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cell‐cycle progression of Ulva compressa is diurnally gated at the G1 phase in accordance with light–dark cycles. The present study was designed to examine the spectral sensitivity of the G1 gating system. When blue, red, and green light‐emitting diodes (LEDs) were used for illumination either alone or in combination, the cells divided under all illumination conditions, suggesting that all colors of light were able to open the G1 gate. Although blue light was most effective to open the G1 gate, red light alone or green light alone was also able to open the G1 gate even at irradiance levels lower than the light compensation point of each color. Occurrence of a period of no cell division in the course of a day suggested that the G1 gating system normally functioned as under ordinary illumination by cool‐white fluorescent lamps. The rise of the proportion of blue light to green light resulted in increased growth rate. On the other hand, the growth rates did not vary regardless of the proportion of blue light to red light. These results indicate that the difference in growth rate due to light color resulted from the difference in photosynthetic efficiency of the colors of light. However, the growth rates significantly decreased under conditions without blue light. This result suggests that blue light mediates cell elongation and because the spectral sensitivity of the cell elongation regulating system was different from that of the G1 gating system, distinct photoreceptors are likely to mediate the two systems.  相似文献   

2.
3.
Abstract. Objectives: Trabectedin (ET‐743, Yondelis®) is a natural marine product, with antitumour activity, currently in phase II/III clinical trials. Previous studies have shown that cells hypersensitive to ultraviolet (UV)‐rays because of nucleotide excision repair (NER) deficiency, were resistant to trabectedin. The purpose of this study was to investigate whether this resistance was associated with different drug‐induced cell cycle perturbations. Materials and Methods: An isogenic NER‐proficient cellular system (CHO‐AA8) and a NER‐deficient one (CHO‐UV‐96), lacking functional ERCC‐1, were studied. Flow cytometric assays showed progressive accumulation of cells in G2 + M phase in NER‐proficient but not in NER‐deficient cells. Applying a computer simulation method, we realized that the dynamics of the cell cycle perturbations in all phases were complex. Results: Cells exposed to trabectedin during G1 and G2 + M first experienced a G1 block, while those exposed in S phase were delayed in S and G2 + M phases but eventually divided. In the presence of functional NER, exit from the G1 block was faster; then, cells progressed slowly through S phase and were subsequently blocked in G2 + M phase. This G2 + M processing of trabectedin‐induced damage in NER‐proficient cells was unable to restore cell cycling, suggesting a difficulty in repairing the damage. Conclusions: This might be due either to important damage left unrepaired by previous G1 repair, or that NER activity itself caused DNA damage, or both. We speculate that in UV‐96 cells repair mechanisms other than NER are activated both in G1 and G2 + M phases.  相似文献   

4.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

5.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.  相似文献   

6.
Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia. Research Methods and Procedures: This study used the murine 3T3‐L1 preadipocyte model to examine p27 regulation during synchronous cell cycle progression. Cell lysates were isolated over time after hormonal stimulation, fractionated to cytosolic and nuclear compartments, and immunoblotted for relative protein determinations. Results: Data presented in this study show that p27 was present in the cytosol and nucleus in density‐arrested preadipocytes and that abundance in both compartments decreased in a phase‐specific manner as preadipocytes synchronously re‐entered the cell cycle during early phases of adipocyte differentiation. Blocking CRM1‐mediated nuclear export did not prevent degradation, nor did it cause nuclear accumulation of p27, suggesting that distinct mechanisms mediating cytosolic and nuclear p27 degradation were involved. Treating preadipocytes with a potent and specific proteasome inhibitor during hormonal stimulation prevented Skp2 accumulation and p27187 phosphorylation, which are essential events for SCFSkp2 E3 ligase activity and nuclear p27 ubiquitylation during S/G2 phase progression. Proteasome blockade also resulted in the first evidence of cytosolic p27 ubiquitylation during late G1 phase as preadipocytes undergo the transition from quiescence to proliferation. Discussion: These data are consistent with the postulate that p27 is ubiquitylated and targeted for degradation by the 26S proteasome in a phase‐specific manner by distinct ubiquitin E3 ligases localized to the cytosol and nucleus during adipocyte hyperplasia.  相似文献   

7.
Morphological changes in the organellar nucleoids and mitochondria of living Chlamydomonas reinhardtii Dang were examined during the cell cycle under conditions of 12:12 light:dark. The nucleoids were stained with SYBR‐Green I, and the mitochondria were stained with 3,3‐dihexyloxacarbocyanine iodide. An mocG33 mutant, which contains one large chloroplast nucleoid throughout the cell cycle, was used to distinguish between the mitochondrial and chloroplast nucleoids. Changes in the total levels of organellar DNA levels were assessed by real‐time PCR. Each of the G1, S, M, and Smt,cp phases was estimated. At the start of the light period, the new daughter cells were in G1 and contained about 30 mitochondrial and 10 chloroplast nucleoids, which were dispersed and had diameters of 0.1 and 0.2 μm, respectively. During the G1 phase of the light period, and at the start of the S phase, both nucleoids formed short thread‐like or bead‐like structures, probably divided, and increased continuously in number, concomitantly with DNA synthesis. The nucleoids probably became smaller due to the decrease in DNA of each particle and were indistinguishable. The cells in the S and M phases contained extremely high numbers of scattered nucleoids. However, in the G1 phase of the dark period, the nucleoids again formed short thread‐like or bead‐like structures, probably fused, and decreased in number. The mitochondria appeared as tangled sinuous structures that extended throughout the cytoplasm and resembled a single large mitochondrion. During the cell cycle, the numbers of mitochondrial nucleoids and sinuous structures varied relative to one another.  相似文献   

8.
The cell‐cycle progression of Enteromorpha compressa (L.) Nees (=Ulva compressa L.) was diurnally regulated by gating the G1/S transition. When the gate was open, the cells were able to divide if they had attained a sufficient size. However, the cells were not able to divide while the gate was closed, even if the cells had attained sufficient size. The diurnal rhythm of cell division immediately disappeared when the thalli were transferred to continuous light or darkness. When the thalli were transferred to a shifted photoperiod, the rhythm of cell division immediately and accurately synchronized with the shifted photoperiod. These data support a gating‐system model regulated by light:dark (L:D) cycles rather than an endogenous circadian clock. A dark phase of 6 h or longer was essential for gate closing, and a light phase of 14 h was required to renew cell division after a dark phase of >6 h.  相似文献   

9.
Lee YS  Choi KM  Choi MH  Ji SY  Lee S  Sin DM  Oh KW  Lee YM  Hong JT  Yun YP  Yoo HS 《Cell proliferation》2011,44(4):320-329
Objectives: Melanoma is the most aggressive form of skin cancer, and it resists chemotherapy. Candidate drugs for effective anti‐cancer treatment have been sought from natural resources. Here, we have investigated anti‐proliferative activity of myriocin, serine palmitoyltransferase inhibitor, in the de novo sphingolipid pathway, and its mechanism in B16F10 melanoma cells. Material and methods: We assessed cell population growth by measuring cell numbers, DNA synthesis, cell cycle progression, and expression of cell cycle regulatory proteins. Ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate levels were analysed by HPLC. Results: Myriocin inhibited proliferation of melanoma cells and induced cell cycle arrest in the G2/M phase. Expressions of cdc25C, cyclin B1 and cdc2 were decreased in the cells after exposure to myriocin, while expression of p53 and p21waf1/cip1 was increased. Levels of ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate in myriocin‐treated cells after 24 h were reduced by approximately 86%, 57%, 75% and 38%, respectively, compared to levels in control cells. Conclusions: Our results suggest that inhibition of sphingolipid synthesis by myriocin in melanoma cells may inhibit expression of cdc25C or activate expression of p53 and p21waf1/cip1, followed by inhibition of cyclin B1 and cdc2, resulting in G2/M arrest of the cell cycle and cell population growth inhibition. Thus, modulation of sphingolipid metabolism by myriocin may be a potential target of mechanism‐based therapy for this type of skin cancer.  相似文献   

10.
The cell cycle (nuclear division cycle) of a multinucleate green alga, Boergesenia forbesii (Harvey) Feldmann was studied using microspectrophotometry and BrdU incorporation techniques. Mitosis was observed frequently 1-4 h after the beginning of the light period, on a 16:8 h LD cycle at 25°C. Mitotic nuclei formed discrete patches. Other nuclei remained in the G1 period. The DNA synthetic phase (S phase) was estimated to last about 12 h from microspectrophotometric study using aphidicolin inhibition just before the S phase and release from it. The G2 period was estimated to be about 2 h, because a labeled prophase nucleus could be detected when the samples were labeled with BrdU continuously over 3 h. The incorporation pattern of BrdU changed through the S phase nucleus. In early S phase, BrdU staining was detected as many dots in the entire nucleus, while in late S phase, it was detected as several discrete regions along the nuclear membrane. Almost all nuclei in B. forbesii were in the G1 stage after nuclear division, and the nuclei in several patches of the cell simultaneously initiated DNA synthesis. Once the nuclei entered into S phase, these nuclei continued into G2 and mitosis. In other words, the cell cycle regulation of entrance into S phase from G1 is an important factor in the growth and morphogenesis in B. forbesii.  相似文献   

11.
Growing interest in the beneficial effects of antioxidants has inspired the synthesis of new phenolic acid phenethyl ureas (PAPUs) with enhanced antioxidant potential. We have previously shown the capacity of one PAPU compound, (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1), to induce caspase-dependent apoptosis in melanoma cells. In the present study, we examined the anti-proliferative effects of PAPU compounds on MCF-7 human breast cancer cells and determined the molecular mechanisms involved. Treatment with PAPU compounds inhibited predominantly proliferation in these cells, where the PAPU1 was the most efficient form. Flow cytometric analysis showed that PAPU1 blocked cell cycle progression in the G0/G1 phase, and reduced the proportion of cells in G2/M phase. This was related to the inhibition of cell cycle regulatory factors, including cyclin D/E and cyclin-dependent kinase (CDK) 2/4, through induction of p21Cip1. PAPU1 also induced the mitochondrial-mediated and caspase-dependent apoptosis in MCF-7 cells. This was evidenced by cellular changes in the levels of Bcl-2 and Bax, loss of the mitochondrial membrane potential, release of cytochrome c into the cytosol, and caspase-9 activation. Collectively, our results suggest that G1 cell cycle regulatory proteins and mitochondrial pathways are the crucial targets of PAPU1 in the chemoprevention of breast cancer cells.  相似文献   

12.
Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so‐called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we examined photosynthetic characteristics and hydrogen peroxide (H2O2) production, a possible signal involved in bleaching, from two Symbiodinium types (a thermally “tolerant” A1 and “sensitive” B1) representative of cnidaria–Symbiodinium symbioses of reef‐building Caribbean corals. Under steady‐state growth at 26°C, a higher efficiency of PSII photochemistry, rate of electron turnover, and rate of O2 production were observed for type A1 than for B1. The two types responded very differently to a period of elevated temperature (32°C): type A1 increased light‐driven O2 consumption but not the amount of H2O2 produced; in contrast, type B1 increased the amount of H2O2 produced without an increase in light‐driven O2 consumption. Therefore, our results are consistent with previous suggestions that the thermal tolerance of Symbiodinium is related to adaptive constraints associated with photosynthesis and that sensitive phylotypes are more prone to H2O2 production. Understanding these adaptive differences in the genus Symbiodinium will be crucial if we are to interpret the response of symbiotic associations, including reef‐building corals, to environmental change.  相似文献   

13.
Synchronized cell cultures are an indispensable tool for the identification and understanding of key regulators of the cell cycle. Nevertheless, the use of cell cultures has its disadvantages, because it represents an artificial system that does not completely mimic the endogenous conditions that occur in organized meristems. Here, we present a new and easy method for Arabidopsis thaliana root tip synchronization by hydroxyurea treatment. A major advantage of the method is the possibility of investigating available Arabidopsis cell‐cycle mutants without the need to generate cell cultures. As a proof of concept, the effects of over‐expression of a dominant negative allele of the B‐type cyclin‐dependent kinase CDKB1;1 gene on cell‐cycle progression were tested. The previously observed prolonged G2 phase was confirmed, but was found to be compensated for by a reduced G1 phase. Furthermore, altered S‐phase kinetics indicated a functional role for CDKB1;1 during the replication process.  相似文献   

14.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

16.
The cnidarian‐dinoflagellate mutualism is integral to the survival of the coral‐reef ecosystem. Despite the enormous ecological and economic importance of corals, their cellular and molecular biology and the ways in which they respond to environmental change are still poorly understood. We have been developing a proxy system for examining the coral mutualism in which the dinoflagellate symbiont Symbiodinium is introduced into a clonal population of the host Aiptasia, a small sea anemone closely related to corals. To further develop the tools for this system, we generated five clonal, axenic strains of Symbiodinium and verified the lack of contaminants by growth on rich medium, microscopic examination, and PCR analysis. These strains were assigned to clades A (two strains), B, E, and F based on their chloroplast 23S rDNA sequences. Growth studies in liquid cultures showed that the clade B strain and one of the clade A strains were able to grow photoautotrophically (in light with no fixed carbon), mixotrophically (in light with fixed carbon), or heterotrophically (in dark with fixed carbon). The clade E strain, thought to be free‐living, was able to grow photoautotrophically but not heterotrophically. Infection of an aposymbiotic Aiptasia host with the axenic strains showed consistent patterns of specificity, with only the clade B and one of the clade A strains able to successfully establish symbiosis. Overall, the Aiptasia‐Symbiodinium association represents an important model system for dissecting aspects of the physiology and cellular and molecular biology of cnidarian‐dinoflagellate mutualism and exploring issues that bear directly on coral bleaching.  相似文献   

17.
Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin‐dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G2/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV‐encoded E7 oncoprotein and initiates caspase‐dependent apoptosis. Inhibition of the site‐specific phosphorylation of survivin and Bad, occurring at high‐dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G1/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell‐cycle in G1 phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF‐7 cells, HeLa cells do not undergo G1 block after serum starvation, but respond with a slight increase of the ratio of G1 population. Exposure of G1‐enriched HeLa cells to ROSC after re‐feeding does not block their cell‐cycle progression at G1‐phase, but increases the ratio of S‐ and G2‐phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G1‐phase. These results show that inhibition of CDKs by ROSC in cells lacking the G1/S restriction checkpoint has different outcomes depending on the cell‐cycle status prior to the onset of treatment. J. Cell. Biochem. 106: 937–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Summary When the red-light grown protonema ofAdiantum capillus-veneris was transferred to the dark, the nucleus ceased its migration ca. 5 hours before cell plate formation (Mineyuki andFuruya 1980). To see whether the nucleus was held by some cytoplasmic structure during nuclear positioning, protonemata were treated with various centrifugal forces at different stages of the cell cycle. Nuclei of G1 phase were easily displaced by centrifugation at 360×g for 15 minutes, but those of G2 or M phase were not displaced by it, suggesting that the nuclei were held by some cytoplasmic elements in G2 or M phase. This nuclear anchoring was not detectable in protonemata that were treated with 5mM colchicine. With this treatment, the nucleus did not stop its migration at late G2 and moved even in prophase. And the retardation of organelle movement which was observed in cytoplasm on the lateral side of the nucleus after the cessation of premitotic nuclear migration (Mineyuki andFuruya 1984) was not observed in the presence of colchicine. Thus the nuclei appear to be held by colchicine-sensitive structure in cytoplasm between the lateral surface of the nucleus and cell wall during the premitotic nuclear positioning. Electron micrographs showing cytoplasmic microtubules were consistent with the idea.Abbreviations PPN Premitotic positioning of the nucleus - L region Cytoplasm between the lateral surface of the nucleus and cell wall (seeMineyuki et al. 1984)  相似文献   

19.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis Gl. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G 1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells in a stationary culture (G 0 phase) whose development is independent of the growth factors in the medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号