首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cotesia icipe Fernandez‐Triana & Fiaboe is a solitary koinobiont larval endoparasitoid, recently discovered in Kenya and new to science, that parasitizes select lepidopteran herbivores of amaranth. We investigated its host range on five commonly encountered amaranth lepidopteran defoliators. Cotesia icipe accepted, successfully and aggressively parasitized the amaranth noctuid defoliators Spodoptera littoralis (Boisduval) and Spodoptera exigua (Hübner), but failed to parasitize Herpetogramma bipunctalis (F.), Spoladea recurvalis (F.) and Udea ferrugalis (Hübner) all in Crambidae family. On S. littoralis, Cicipe was highly efficient, with 95% of females successfully ovipositing during 2 hr of exposure. Parasitism rate and larval and pupal non‐reproductive mortalities were significantly higher at higher parasitoid density. A single female of Cicipe parasitized 42.99 ± 2.66% of the 50 exposed larvae for oviposition in 24 hr, whereas a cohort of five females of Cicipe conferred 85.59 ± 1.46% parasitism rate. The efficiency ratio per female was much higher in single releases than in cohort releases while a balanced sex ratio was obtained in F1 offspring regardless of the density of female released. The potential use of Cicipe for conservation and augmentative biological control of S. littoralis in amaranth as well as its potential use against other Noctuid moths and in other commodities is discussed.  相似文献   

2.
Larval tobacco hornworms,Manduca sexta (L.), of 2 different colonies were exposed to parasitism by the gregarious endoparasitoid,Cotesia congregata (Say). A comparison was made of parasitoid larval, pre-pupal, and pupal mortality, female and male dry weight and larval development time. In general, “Maryland” hornworms were more suitable hosts than “North Carolina” hornworms. Although the presence of dietary nicotine increased parasitoid mortality in individuals reared from hornworms of both colonies, the effect was more severe among individuals parasitizing the North Carolina hornworms. Scientific contribution No. 8125, article No. A-5066 of the Maryland Agricultural Experiment Station, Department of Entomology.  相似文献   

3.
Insect pathogenic viruses and parasitoids represent distinct biological entities that exploit a shared host resource and have similar effects in suppressing host populations. This study explores the interactions between the ectoparasitoid Euplectrus plathypenae (Hymenoptera: Eulophidae) and the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in larvae of S. exigua (Lepidoptera: Noctuidae). Parasitoid progeny failed to complete development in hosts that had been infected prior to parasitism. However, infection of S. exigua fourth instars at 48 h post‐parasitism had no significant effects on the survival of parasitoid progeny. Larval and pupal development times of E. plathypenae that survived on virus‐infected S. exigua did not differ significantly from that of parasitoids on healthy hosts. Virus‐induced mortality and the production of occlusion bodies were very similar in parasitized and non‐parasitized S. exigua. The virus was genetically stable over three passages in parasitized and unparasitized hosts. These results suggest that applications of SeMNPV‐based insecticides are unlikely to disrupt pest control exerted by the parasitoid E. plathypenae in biological pest control programs as long as virus applications are timed not to coincide with parasitoid releases.  相似文献   

4.
Herbivore-induced plants responses can affect the preference and performance of herbivores and their natural enemies. These responses may vary depending on the identity and number of herbivore species feeding on the plant so that when herbivores from different guilds feed on plants, the interactions between plants, herbivores, and natural enemies may be disrupted. Tomato plants were damaged either by the caterpillar Spodoptera exigua, or the aphid Macrosiphum euphorbiae, or damaged by both herbivores, or undamaged controls. We measured the preference and performance of S. exigua and its parasitoid Cotesia marginiventris, and activity of proteinase inhibitors (PI) as an indicator of induced resistance. Compared to undamaged plants, caterpillar damage reduced the number of eggs laid by S. exigua adults, reduced growth, consumption, and survival of larval S. exigua and C. marginiventris, and increased activity of PIs 43%; but did not increase attraction of C. marginiventris. While pupal mass of S. exigua was not affected, the pupal mass of C. marginiventris decreased on caterpillar-damaged plants compared to controls. In contrast, plants damaged by aphids were preferred for oviposition by S. exigua, and had increased larval consumption and survival, compared to controls. Aphid feeding did not affect the preference or performance of C. marginiventris, or PI activity, compared to controls. While oviposition was deterred on caterpillar-damaged plants, plants damaged by both herbivores received the same amount of oviposition as controls. The attraction of C. marginiventris to plants damaged by caterpillars and aphids was increased compared to controls. However, plants damaged by both herbivores had similar PI activity, larval growth and survival of S. exigua and C. marginiventris, as plants singly damaged by caterpillars. Overall, the preference component for both the herbivore and parasitoid was more strongly affected by damage due to multiple herbivores than the performance component.  相似文献   

5.
Bt cotton (Cry1Ac) has been commercially grown in China since 1997, saving China's cotton production from attack by Bt‐target pests and also tremendously reducing pesticide usage. In recent years, however, Bt cotton, with 4.2 million ha of cultivation, has suffered from a secondary target pest, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In China, growers have even had to re‐adopt conventional pesticides to control the pest, and this practice has already caused serious pesticide residue. In order to clarify the sublethal effects of chemical pesticide, the responses of a Bt‐susceptible and a Bt‐tolerant (Bt10) S. exigua strain to three treatment combinations were examined, including Bt toxin, sublethal chlorpyrifos, and Bt + sublethal chlorpyrifos. The susceptible and the Bt10 strain responded differently to dual pressure. Bt toxin + sublethal chlorpyrifos treatment lowered larval mortality and stimulated population increase of the susceptible S. exigua, whereas it delayed growth and development of the Bt10 strain. Under dual pressure, although larvae of the Bt10 strain developed faster than larvae of the susceptible strain, the Bt10 population experienced higher larval mortality, prolonged pupal duration, decreased pupal weight, decreased emergence rate, and shortened adult longevity. Compared with the susceptible strain, the Bt10 strain was deleteriously affected by sublethal chlorpyrifos. The Bt‐tolerant/resistant S. exigua population was more vulnerable to chemical pesticides like chlorpyrifos regardless of whether it was exposed to Bt toxin or not. Our study provides a reference for increasing the efficacy of control of S. exigua in Bt‐cotton planting areas.  相似文献   

6.
We studied topographical and year-to-year variation in the performance (pupal weights, survival) and larval parasitism of Epirrita autumnata larvae feeding on mountain birch in northernmost Finland in 1993–1996. We found differences in both food plant quality and parasitism between sites ranging from 80 m to 320 m above sea level. Variation in food plant quality had particularly marked effects on larval survival. The advanced phenology of the birches in relation to the start of the larval period reduced pupal weights. Parasitism rates were different between years and between sites. The clearest site differences were in the proportions of different parasitoid species: Eulophus larvarum was most abundant at the lowest-altitude sites, and Cotesia jucunda at the highest. Differences in the performance of E. autumnata were related to temperature conditions: at higher temperatures, survival and the egg production index were lower, and larval parasitism was higher than at lower temperatures. The higher parasitism at higher temperatures was probably due to greater parasitoid activity during warmer days. In the comparison of different sources of spatial and annual variation in the performance of E. autumnata, the most important factor appeared to be egg mortality related to minimum winter temperature, followed by parasitism and, finally, the variation in food plant quality. If, as predicted, the climate gradually warms up, the effects of warmer summers on the outbreaks of E. autumnata suggest a decrease in outbreak intensity. Received: 4 January 1999 / Accepted: 22 March 1999  相似文献   

7.
The effect of two insect growth regulators and a neonicotinoid insecticide were tested on immature stages and adults of the parasitoid Aphtyis melinus DeBach (Hymenoptera: Aphelinidae), a key natural enemy of California red scale, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), in California. No significant effects of the insect growth regulators on survival or development to the adult stage were found when the parasitoid was treated at any of the egg, larval, or pupal stages. The broad-spectrum neonicotinoid acetamiprid also showed no significant effect on the development of A. melinus to the pupal stage, probably because immature stages of this ectoparasitoid are protected under the cover of its armored scale host. However, 48 h exposure of adults to acetamiprid residues following emergence resulted in high levels of wasp mortality. Aphytis melinus adults treated with either of the two insect growth regulators as larvae survived 48 h exposure to pesticide residues as adults and showed levels of fecundity comparable with control insects. We conclude that the two insect growth regulators are compatible with augmentative releases of A. melinus but that treatments of acetamiprid should be avoided in situations where biological control by this parasitoid is important.  相似文献   

8.
Effects of mixed cropping and barrier crops on the population density and parasitism of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were evaluated in field plots of cabbage grown in Bali, Indonesia. The densities of P. xylostella at larval and pupal stages, as well as the overall density at larval plus pupal stages, were significantly lower in cabbage/coriander mixed cropping subplots than in cabbage monoculture subplots. Parasitism of P. xylostella by the larval parasitoid Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) was not significantly different between the mixed and monocultural cropping systems. These results do not support the so-called enemies hypothesis, but suggest that disruption of the host searching behavior of female moths by neighboring non-host plants is the mechanism behind the associational resistance observed in the coriander mixed cropping system. The inclusion of a Napier grass barrier between mixed crop and monoculture subplots did not affect the influence of mixed cropping on larval and pupal densities. Therefore, Napier grass, which is used locally as a fence for preventing livestock invasion of fields, would not obstruct the pest-reducing effect of coriander/cabbage mixed cropping.  相似文献   

9.
1. Host plant switching by dispersing early instar lepidopterans could have implications for parasitoid performance, but this possibility has not been evaluated thoroughly. 2. The relative growth rates of Lymantria dispar parasitized by Cotesia melanoscela, and the weight of larvae at the time of parasitoid emergence, were affected most by the second larval food plant consumed. 3. The relative growth rates, pupal weights, weight of larva at the time of parasitoid emergence, and development times of L. dispar were affected significantly by the second larval food plant consumed. 4. Development time and size of Cotesia melanoscela were affected most by the second larval food plant consumed. 5. Parasitoid performance was affected most by the larval host’s relative growth rate and the final weight of the host larva at the time of parasitoid emergence. 6. Host plant switching affected the weight of L. dispar larvae at the time of parasitoid emergence, but the effect of switching per se was not a significant factor in C. melanoscela size or development. 7. Lymantria dispar larvae that fed on Populus as their second host outperformed larvae that fed ultimately on Acer. 8. Parasitoids yielded from L. dispar larvae that fed ultimately on Populus outperformed parasitoids yielded from larvae that fed ultimately on Acer. 9. Per cent mortality of L. dispar due to parasitism and percentage adult C. melanoscela emergence were highest in parasitized larvae fed Populus, poor in hosts fed Acer, and intermediate in switching larvae.  相似文献   

10.
Makoto Kato 《Oecologia》1994,97(1):17-25
The parasitoid community dynamics of an agromyzid honeysuckle leafminer, Chromatomyia suikazurae (Agromyzidae, Diptera) were studied between 1981 and 1990 in a natural forest in Kyoto, Japan. The parasitoid fauna composed three koinobionts (all larval-pupal solitary parasitoids) and 22 idiodiont species (11 larval solitary, nine pupal solitary and one pupal gregarious). The parasitoid community was dominated by early-attacking oligophagous braconid koinobionts at early periods, but was gradually displaced by late-attacking polyphagous eulophid idiobionts. Accordingly, the diversity index of the parasitoid community peaked at an intermediate point in the intra-generational succession. The succeeding attack-in-waves by the late-attacking idiobionts greatly reduced not only the survival rates of early-attacking parasitoid larvae but also the survival rates of hosts. The density-dependence observed in the host pupal mortality was thought to result from density-dependent host-switching by a keystone polyphagous pupal idiobiont parasitoid, Chrysocharis pubens, whereas high host pupal mortality was potentially attained by an early-attacking koinobiont braconid. Supposed aggregation of polyphagous parasitoids at high host density resulted in intense within-host competition and in an increase of host-feeding attack, both of which contributed to low emergence rates of parasitoids at high host densities. Parasitoid emergence rates were also reduced at low host densities, probably by inter- and intra-specific hyperparasitism among oligophagous parasitoids for limited hosts. The regulation effects of the species-rich parasitoid community upon the host population dynamics are thought to derive from succeeding attack-in-waves by polyphagous late-attacking idiobionts, especially by the keystone species.  相似文献   

11.
A two-host–two-parasitoid model was constructed to assess the effects of the introduced larval parasitoid, the braconid Cotesia flavipes, on its primary target host, the invasive crambid Chilo partellus, and on secondary host species, in inter-specific competition with Cotesia sesamiae, the main native parasitoid species of stemborers in Kenya. The model assumed that: (1) there was no host discrimination by either parasitoid species; (2) Cotesia flavipes was the superior competitor that out-competed Cotesia sesamiae when the host was suitable; and (3) Cotesia flavipes could only develop in an unsuitable host if it had been previously parasitized by Cotesia sesamiae. Model parameters were estimated from surveys conducted in Kenya and from laboratory experiments. Different scenarios of host and parasitoid species composition and host suitability occurring in the different ecological zones in Kenya were analyzed. Results indicated that: (1) the coexistence of stemborer host populations are determined by their population growth rates, the degree of aggregation of the parasitoids and their searching efficiency; (2) in the regions where both the invasive and the predominant native host species were suitable to either parasitoid species, stemborer densities would be reduced to and controlled at low densities, and Cotesia flavipes would become the dominant parasitoid species. However, the extinction or predominance of the native stemborer species depends on the ratio of the growth rates of exotic and native stemborers and their relative searching efficiencies; and (3) if the native host species was acceptable but unsuitable to Cotesia flavipes, the parasite would not become established.  相似文献   

12.
Spoladea recurvalis (Fbr.) (Lepidoptera: Crambidae) larvae can cause up to 100% foliage loss on amaranths during severe outbreaks. The Bacillus thuringiensis Subsp. kurstaki product Halt® is a biologically safe biopesticide recommended for the management of Spodoptera exigua (Hübner) and Plutella xylostella (Linnaeus). Spoladea recurvalis larvae are less susceptible to the product. Thirteen chemical additives to improve the efficacy of a Bt spray for control of S. recurvalis were evaluated in laboratory bioassays against second-instar larvae. All the additives except calcium chloride caused an increase in mortality when applied in mixtures with Bt. Among the seven inorganic salts, boric acid was the only inorganic acid that caused more than 50% larval mortality. Boric acid at a concentration of 0.05% increased the activity of B. thuringiensis by 2.9-fold. Boric acid had the shortest LT50 values of 5.3 days compared with all other combinations. Two nitrogenous compounds, peptone and sodium nitrate, caused 54 and 51% larval mortalities; however, this increase in efficacy was not significantly different from the mortalities caused by Bt applied without any additive. Urea increased larval mortality from 40% to 51%, although the increase was not significant from a Bt spray application only. Citric acid had no significant effect on the efficacy of Bt spray against S. recurvalis larvae. Overall, among the additives evaluated, the efficacy of Bt spray was most enhanced by boric acid and could be further evaluated under field conditions for validation, and integration into an Integrated Pest Management (IPM) strategy for S. recurvalis management.  相似文献   

13.
There is a growing body of evidence that many hymenopteran parasitoids make use of olfaction as the primary mechanism to detect and locate hosts. In this study, a series of bioassays was conducted to investigate the orientation behaviour of the gum leaf skeletonizer larval parasitoid Cotesia urabae Austin & Allen (Hymenoptera: Braconidae) in both Y‐tube and four‐arm olfactometers. In a Y‐tube olfactometer, male C. urabae were attracted only to virgin conspecific females. Host‐plant leaves, damaged leaves, host larvae, and host larvae feeding on leaves were highly attractive to female C. urabae, whereas host frass and conspecific males were not. The multiple‐comparison bioassay conducted in a four‐arm olfactometer clearly indicates that C. urabae females were significantly more attracted to the host Uraba lugens Walker (Lepidoptera: Nolidae) larvae feeding on Eucalyptus fastigata H Deane & Maiden (Myrtaceae) leaves than to any other of the odour sources tested. The results of this study show that C. urabae individuals responded to chemical cues specific to the host plant and target host insect, and support hypotheses that unreliable cues are not utilized for host location by specific natural enemies.  相似文献   

14.
For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb) selected by individuals can affect offspring fitness and parental survival. Reproductive trade‐offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influenced thermoregulation in female Arizona Bark Scorpions (Centruroides sculpturatus). We predicted that gravid females select higher Tb and thermoregulate more precisely than nonreproductive females. Gravid C. sculpturatus gain body mass throughout gestation, which exposes larger portions of their pleural membrane, possibly increasing their rates of transcuticular water loss in arid environments. Accordingly, we tested whether gravid C. sculpturatus lose water faster than nonreproductive females. We determined the preferred Tb of female scorpions in a thermal gradient and measured water loss rates using flow‐through respirometry. Gravid females preferred significantly higher Tb than nonreproductive females, suggesting that gravid C. sculpturatus alter their thermoregulatory behaviour to promote offspring fitness. However, all scorpions thermoregulated with equal precision, perhaps because arid conditions create selective pressure on all females to thermoregulate effectively. Gravid females lost water faster than nonreproductive animals, indicating that greater exposure of the pleural membrane during gestation enhances the desiccation risk of reproductive females. Our findings suggest that gravid C. sculpturatus experience a trade‐off, whereby selection of higher Tb and increased mass during gestation increase females' susceptibility to water loss, and thus their mortality risk. Elucidating the mechanisms that influence thermal preferences may reveal how reproductive trade‐offs shape the life history of ectotherms in arid environments.  相似文献   

15.
Nitrogen has complex effects on plant–herbivore–parasitoid tritrophic interactions. The negative effects of low nitrogen fertilization in host plants on insect herbivores can be amplified to the higher trophic levels. In the present study, we examined the impact of varying nitrogen fertilization (42, 112, 196, and 280 ppm) of cotton plants (Gossypium hirsutum L.) on the interactions between the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), and the hymenopteran endoparasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). We predicted that the development and fitness of C. marginiventris would be adversely affected by low host plant nitrogen fertilization through the herbivore S. exigua. The percentage of C. marginiventris offspring developing to emerge and spin a cocoon, and total mortality of parasitized S. exigua larvae were unaffected by nitrogen level. The developmental time of C. marginiventris larvae in S. exigua larvae feeding on low (42 ppm) nitrogen cotton plants was approximately 30% longer than that of those feeding on higher (112, 196, and 280 ppm) nitrogen plants. Parasitoid size (length of right metathoracic tibia), a proxy for fitness, of C. marginiventris males was positively affected by nitrogen level. Total amounts of S. exigua hemolymph proteins were not affected by nitrogen level, but were reduced by parasitism by C. marginiventris. Two proteins with molecular weights of ca. 84 and 170 kDa dominated the S. exigua larval hemolymph proteins. Concentrations of the 170 kDa hemolymph protein were unaffected by nitrogen treatment, but parasitism reduced concentrations of the 170 kDa protein. Concentrations of the 84 kDa protein, on the other hand, were interactively affected by parasitism and nitrogen treatment: higher nitrogen fertilization (112, 196, and 280 ppm) increased protein concentrations relative to the 42 ppm treatment for unparasitized S. exigua larvae, whereas nitrogen treatment had no effects on parasitized larvae. For S. exigua larvae feeding on 42 ppm nitrogen plants, parasitism increased concentration of the 84 kDa protein, while for those feeding on 112, 196, and 280 ppm nitrogen plants, parasitism decreased concentrations of the protein. Possible mechanisms and ecological consequences for the extended development of C. marginiventris on S. exigua hosts grown on low-nitrogen plants are discussed.  相似文献   

16.
The functional response of a predator to the density of its prey is affected by several factors, including the prey's developmental stage. This study evaluated the functional response of Podisus nigrispinus (Dallas) (Hemiptera: Heteroptera: Pentatomidae) females to fourth instars and pupae of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton (Gossypium hirsutum L., Malvaceae) in Brazil. The prey were exposed to the predator for 12 and 24 h, and in densities of 1, 6, 12, 18, 24, and 30 items per predator female. The predation data were subjected to polynomial regression logistic analysis to determine the type of functional response. Holling and Rogers' equations were used to estimate parameters such as attack rate and handling time. Podisus nigrispinus females showed functional response types II and III by preying on larvae and pupae, respectively. The attack rate and handling time did not differ between the 12 and 24 h exposure times. Predation rate was higher at higher larval and pupal densities; predation was highest at a density of 30 prey items per female, and it was similar at 18 and 24 prey per predator. Understanding the interaction of predators and their food resources helps to optimize biological control strategies. It also helps the decision‐making and the improvement of release techniques of P. nigrispinus in the field.  相似文献   

17.
Population dynamics of a leafminer,Chromatomyia suikazurae (Agromyzidae, Diptera) and its parasitoid community were studied for ten years at seven natural populations along an altitudinal gradient in Japan. This species which mines leaves of a forest shrub,Lonicera gracilipes (Caprifoliaceae), was attacked by 25 hymenopterous parasitoid species. Annually, the parasitoid community structure varied less within a population than among populations. The seven parasitoid communities were clustered into three groups corresponding to the altitudinal gradient: (a) lowland communities dominated by late-attacking, generalist pupal idiobiont eulophids and with highest species diversity, (b) hillside communities dominated by an early-attacking, specialist larval-pupal koinobiont braconid and (c) highland communities dominated by an early-attacking, generalist larval idiobiont eulophid. Annual changes of the host larval densities among the local populations were largely synchronous rather than cyclic. Among these populations, host density levels and mortality patterns greatly varied. By analyzing these inter-populational differences of host mortality patterns, the following conclusions were drawn: (1) The host mortality patterns were determined by the host utilization patterns of the locally dominant species. (2) The host pupal mortality but not larval mortality was related to species diversity but not to species richness itself of each parasitoid community. (3) Density dependence was detected only in pupal mortality at a lowland population dominated by late-attacking pupal parasitoids. These results suggest that interspecific interactions of parasitoids add additive effects to host population dynamics dissimilarly among local populations with different parasitoid communities.  相似文献   

18.
Abstract 1. When offered a choice, female diamondback moths (Plutella xylostella) oviposited more eggs on plants with non‐parasitised conspecific larvae than on plants with parasitised larvae. 2. The leaf area consumed by parasitised larvae was significantly lower than that by non‐parasitised larvae. However, this quantitative difference in larval damage did not explain the female’s ability to discriminate between plants with parasitised and non‐parasitised larvae, as females showed an equal oviposition preference for plants infested by higher or lower densities of non‐parasitised larvae. 3. Pupal weight and duration of the larval stage of P. xylostella were independent of whether larvae were reared on plants that were previously infested by either non‐parasitised or parasitised larvae. 4. The larval parasitoid Cotesia vestalis did not distinguish between plants infested by non‐parasitised larvae and plants infested by larvae that had already been parasitised by conspecific wasps. 5. Based on these data, it can be concluded that the moth oviposition preference for plants infested by non‐parasitised conspecifics relative to plants infested by parasitised conspecifics was not explained by plant quality or by the attractiveness of plants towards wasps. It is hypothesised that one of the reasons for this preference is avoidance of plants where a relatively high risk of parasitism is expected due to the emergence of parasitoids from the parasitised host larvae.  相似文献   

19.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

20.
Two mitotypes of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) named KI and KII, co‐exist in Kenya. Individuals of KII are more widely distributed than those of KI. The present study assessed whether this was due to differences in their reproductive potential and/or in their resistance to the braconid Cotesia sesamiae Cameron, which is the most common larval parasitoid of B. fusca in the region. Two populations of the parasitoid, one from the coastal and one from the inland regions of Kenya, which differ in their ability to develop in B. fusca, were tested. Virgin KII females started to call sooner during the night than KI females. Female fecundity and egg viability were significantly lower for the heterogamous than the homogamous crosses. Cotesia sesamiae from the inland produced larger progeny in KI than in KII host. Cotesia sesamiae from the coast did not develop in either host. Despite their long time co‐existence in the same geographical area, KII and KI conserved biological differences in terms of time of calling, fecundity, fertility and resistance against the larval parasitoid, C. sesamiae. This might explain the wider distribution of KII as compared to KI in Kenya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号