首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The morphology, ontogenesis, and phylogenetic relationships of a halophile euplotid ciliates, Euplotes qatarensis nov. spec., isolated from the Khor Al‐Adaid Lagoon in Qatar were investigated based on live observation as well as protargol‐ and silver nitrate‐impregnated methods. The new species is characterised by a combination of features: the halophile habitat, a cell size of 50–65 × 33–40 μm, seven dorsal ridges, 10 commonly sized frontoventral cirri, two widely spaced marginal cirri, 10 dorsolateral kineties, and a double silverline pattern. The morphogenesis is similar to that of its congeners: (i) the oral primordium develops hypoapokinetally and the parental oral apparatus is retained; (ii) the frontoventral‐transverse field of five streaks gives rise to the frontal, ventral, and transverse cirri, but not to the cirri I/1 and the marginal cirri; (iii) the dorsal somatic ciliature develops by intrakinetal proliferation of basal bodies in two anlagen per kinety that are just anterior and posterior to the future division furrow; (iv) the caudal cirri are formed by the two rightmost dorsolateral kineties. The SSU rDNA sequence of E. qatarensis branches with full support in the Euplotopsis elegans–Euplotes nobilii–Euplotopsis raikovi clade. The closest related publicly available SSU rDNA sequence is the one of E. nobilii, with which E. qatarensis has 93.4% sequence similarity. Euplotes parawoodruffi Song & Bradbury, 1997 is transferred to the genus Euplotoides based on the absence of frontoventral cirrus VI/3.  相似文献   

2.
3.
4.
A new Euplotes species, isolated from abyssal depths (>4000 m) of the North Atlantic Ocean, was described based on morphology, ciliary pattern and molecular data. Euplotes dominicanus sp. n. is characterized by a small body size (29–40 × 17–27 μm in vivo), 18–22 adoral membranelles, 10 frontoventral, five transverse and two left marginal cirri and one caudal cirrus, five or six dorsolateral kineties with 7–9 dikinetids in mid-dorsolateral kinety (DK3), and dorsal silverline system of the double-eurystomus type. Phylogenetic analyses inferred from 18S rRNA sequences show that Euplotes dominicanus sp. n. is most closely related to E. curdsi, with a sequence similarity of 97.6 %. Euplotes dominicanus sp. n. was able to survive hydrostatic pressures up to 500 bar indicating its barotolerance. Metabarcoding data demonstrate the presence of E. dominicanus sp. n. in sediments of several deep-sea basins.  相似文献   

5.
6.
Euplotes is diversified into dozens of widely distributed species that produce structurally homologous families of water‐borne protein pheromones governing self‐/nonself‐recognition phenomena. Structures of pheromones and pheromone coding genes have so far been studied from species lying in different positions of the Euplotes phylogenetic tree. We have now cloned the coding genes and determined the NMR molecular structure of four pheromones isolated from Euplotes petzi, a polar species which is phylogenetically distant from previously studied species and forms the deepest branching clade in the tree. The E. petzi pheromone genes have significantly shorter sequences than in other congeners, lack introns, and encode products of only 32 amino acids. Likewise, the three‐dimensional structure of the E. petzi pheromones is markedly simpler than the three‐helix up‐down‐up architecture previously determined in another polar species, Euplotes nobilii, and in a temperate‐water species, Euplotes raikovi. Although sharing the same up‐down‐up architecture, it includes only two short α‐helices that find their topological counterparts with the second and third helices of the E. raikovi and E. nobilii pheromones. The overall picture that emerges is that the evolution of Euplotes pheromones involves progressive increases in the gene sequence length and in the complexity of the three‐dimensional molecular structure.  相似文献   

7.
The living morphology, infraciliature and silverline system of two small Euplotes species, E. wuhanensis sp. n. and E. muscicola Kahl, 1932, isolated from Wuhan, central China, were investigated. Euplotes wuhanensis sp. n. is characterized by a combination of features including small size (40–50 × 25–30 μm), two conspicuously small and eight normal-sized frontoventral cirri, five transverse cirri in two groups, two marginal and two caudal cirri, seven dorsal kineties with about 12 dikinetids in the mid-dorsal row and a double-eurystomus type of dorsal silverline pattern. The Wuhan population of E. muscicola closely resembles previously described populations. The establishments of three subspecies of E. muscicola are not supported. The small subunit ribosomal RNA gene sequences were determined for both species. We propose that the two sequences under the name of E. muscicola (No. AJ305254, DQ917684 deposited in GenBank) are very likely from misidentified material. Phylogenetic analyses based on these data support the validity of both E. muscicola and E. wuhanensis as distinct species.  相似文献   

8.
9.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

10.
Data improving the characterization of the marine Euplotes species, E. petzi Wilbert and Song, 2008, were obtained from morphological, ecological and genetic analyses of Antarctic and Arctic wild-type strains. This species is identified by a minute (mean size, 46 μm × 32 μm) and ellipsoidal cell body which is dorsally decorated with an argyrome of the double-patella type, five dorsal kineties (of which the median one contains 8–10 dikinetids), five sharp-edged longitudinal ridges, and a right anterior spur. Ventrally, it bears 10 fronto-ventral, five transverse, two caudal and two marginal cirri, 30–35 adoral membranelles, and three inconspicuous ridges. Euplotes petzi grows well at 4 °C on green algae, does not produce cysts, undergoes mating under the genetic control of a multiple mating-type system, constitutively secretes water-borne pheromones, and behaves as a psychrophilic microorganism unable to survive at >15 °C. While the α-tubulin gene sequence determination did not provide useful information on the E. petzi molecular phylogeny, the small subunit rRNA (SSU rRNA) gene sequence determination provided solid evidence that E. petzi clusters with E. sinicus Jiang et al., 2010a, into a clade which represents the deepest branch at the base of the Euplotes phylogentic tree.  相似文献   

11.
12.
Morphogenesis of the hypotrich ciliate Uroleptoides longiseries, isolated from sandy soil beside the Yellow River, Suide, Yulin, Shaanxi Province, China, was investigated using protargol staining. The main events during binary fission are as follows: (1) the long frontoventral row is formed by a single anlage; (2) five frontoventral‐transverse cirral anlagen are formed in primary mode; (3) only the posterior part of the parental adoral zone of the membranelles is renewed; and (4) the oral primordium of the opisthe is formed intrakinetally. This is the first detailed record of all stages of morphogenesis for Uroleptoides. We also provide the first record of the small subunit ribosomal DNA (SSU rDNA) sequences for U. longiseries. Phylogenetic analyses based on the SSU rDNA sequences data show that Uroleptoides longiseries clusters with U. magnigranulosa with moderate to high support which together form a clade with Orthoamphisiella breviseries. These three species share the morphogenetic feature of the long frontoventral row being formed by a single anlage.  相似文献   

13.
14.
Six isolates of mineral‐enveloped Strombidinopsis minima‐like species were collected from the coastal waters across several regions in Korea. Morphological observations and molecular analyses were performed. The ribosomal DNA sequences (including small subunit ribosomal DNA, internal transcriber spacer 1‐5.8S ribosomal DNA‐internal transcriber spacer 2; and part of large subunit ribosomal DNA) of these six isolates were compared. Their morphological characteristics were also compared with those of S. minima populations reported. The marked genetic differences (with a similarity range of 96.85–98.48%) in SSU rDNA among these S. minima‐like entities suggest the existence of multiple species. This finding is also supported by morphological variations detected in this study and reported in the literature (e.g. 15–32 collar membranelles in different populations). In addition, S. minima‐like species are clustered with S. batos and S. sinicum, and therefore, our SSU rDNA results support previous results suggesting that the genus Strombidinopsis is not monophyletic in origin. Further collection of morphological and molecular data may facilitate the determination of a new genus carrying mineral‐enveloped Strombidinopsis species.  相似文献   

15.
The cyst–theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Pedro Harbor, California, USA. The cysts have a brown‐coloured wall, and are characterized by a saphopylic archeopyle comprising three apical plates, the apical pore plate and canal plate; and acuminate processes typically arranged in linear clusters. We elucidate the phylogenetic relationship of P. fukuyoi through large and small subunit (LSU and SSU) rDNA sequences, and also report the SSU of the cyst‐defined species Islandinium minutum (Harland & Reid) Head et al. 2001. Molecular phylogenetic analysis by SSU rDNA shows that both species are closely related to Protoperidinium americanum (Gran & Braarud 1935) Balech 1974. Large subunit rDNA phylogeny also supports a close relationship between P. fukuyoi and P. americanum. Three subgroups in total are further characterized within the Monovela group. The cyst of P. fukuyoi shows a wide geographical range along the coastal tropical to temperate areas of the North‐east Pacific, its distribution reflecting optimal summer sea‐surface temperatures of ~14–18 °C and salinities of 22–34 psu.  相似文献   

16.
Pleurostomatida Schewiakoff, 1896 is a cosmopolitan order of ciliates. In the present study, we investigated two new pleurostomatid species, Apolitonotus lynni gen. et sp. nov. and Protolitonotus clampi sp. nov., with state‐of‐the‐art methods. Apolitonotus lynni lacks its oral extrusomes and its right kineties form an anterior semi‐suture near the dorsal margin. Based on these two features, the new genus Apolitonotus was established within the Protolitonotidae Wu et al., 2017. Protolitonotus clampi differs from its congeners by its size of 80–130 × 15–30 μm, 4–6 left, and 9–11 right kineties, extrusomes arranged along the oral slit, and two macronuclear nodules. Because Litonotus antarcticus possesses an anterior semi‐suture and oral extrusomes, it was transferred to the genus Protolitonotus, becoming P. antarctius comb. nov. (basionym Litonotus antarcticus Song and Wilbert, 2002). Phylogenetic analyses based on SSU rDNA sequences suggest a sister group relationship of P. clampi and the family Kentrophyllidae, and A. lynni is adelphotaxon to Litonotus gracilis, both within the order Pleurostomatida. Based on the new findings, an improved diagnosis for Protolitonotus was also provided.  相似文献   

17.
Since 1998, a heterokont flagellate initially named Chattonella aff. verruculosa has formed recurrent extensive blooms in the North Sea and the Skagerrak, causing fish mortalities. Cells were isolated from the 2001 bloom off the south coast of Norway, and monoalgal cultures were established and compared with the Chattonella verruculosa Y. Hara et Chihara reference strain NIES 670 from Japan. The cells in Norwegian cultured isolates were very variable in size and form, being large oblong (up to 34 μm long) to small rounded (5–9 μm in diameter) with two unequal flagella, numerous chloroplasts, and mucocysts. The SSU and partial LSU rDNA sequences of strains from Norway and Japan were compared and differed by 0.4% (SSU) and 1.3% (LSU), respectively. Five strains from Norway were identical in the LSU rDNA region. Phylogenetic analyses based on heterokont SSU and concatenated SSU + LSU rDNA sequences placed C. aff. verruculosa and the Japanese C. verruculosa within the clade of Dictyochophyceae, with the picoflagellate Florenciella parvula Eikrem as the closest relative. Ultrastructure, morphology, and pigment composition supported this affinity. We propose the name Verrucophora farcimen sp. et gen. nov. for this flagellate and systematically place it within the class Dictyochophyceae. Our studies also show that C. verruculosa from Japan is genetically and morphologically different but closely related to V. farcimen. The species is transferred from the class Raphidophyceae to the class Dictyochophyceae and renamed Verrucophora verruculosa. We propose a new order, Florenciellales, to accommodate V. farcimen, V. verruculosa, and F. parvula.  相似文献   

18.
A terrestrial oxytrichid ciliate Paraparentocirrus sibillinensis n. gen., n. sp., which was found in soil samples of a beech forest stand within the National Park of Sibillini Mountains, Italy, was investigated using live observation and protargol impregnation. The morphology of interphase, morphogenesis, and molecular phylogeny inferred from SSU rDNA sequences of this ciliate were studied. Paraparentocirrus n. gen., is mainly characterized by a semirigid body, an undulating membrane in the Oxytricha pattern, six fronto‐ventral (FV) rows, the absence of transverse cirri, one right and one left row of marginal cirri, four dorsal kineties, two dorsomarginal rows, and caudal cirri at the end of dorsal kinety 4. During morphogenesis, oral primordia develop through the proliferation of basal bodies from some cirri of FV rows 4 and 5, and FV row 6 takes part in the anlagen formation of the proter. The dorsal morphogenesis was typical of oxytrichids, with simple fragmentation of dorsal kinety 3, and the dorsomarginal rows developed from the right marginal row. Phylogenetic analyses based on the SSU rDNA sequences support the classification of this new genus in the stylonychines.  相似文献   

19.
Recent studies indicate that there is a high diversity of pleurostomatid ciliates in the coastal waters of China. Here, three new congeners of Loxophyllum, L. caudatum sp. n., L. rugosum sp. n., and L. chinense sp. n., are described following observations of live cells and protargol‐impregnated specimens. All three species usually have two macronuclear nodules and prominent warts along the dorsal margin formed by clustered extrusomes. In addition, L. caudatum sp. n. is characterized by its long conspicuous tail, dot‐like cortical granules, 4 or 5 left and 9 or 10 right kineties, and a single subterminal contractile vacuole. Loxophyllum rugosum sp. n. is distinguished by possessing three prominent ridges on the left side, 7–11 right and 5–7 left kineties. Loxophyllum chinense sp. n. is characterized by having several contractile vacuoles distributed along the ventral margin, 13–18 right and 6–8 left kineties. The small subunit ribosomal DNA (SSU rDNA) sequence similarities among six congeners range from 96.46% to 99.94%. Phylogenetic trees based on the SSU rDNA sequences indicate that all Loxophyllum spp. form a well‐supported monophyletic group. A brief review of the marine and brackish Loxophyllum species is supplied and one new combination, Litonotus multiplicatus (Kahl 1931) comb. n. (basionym Loxophyllum multiplicatum Kahl 1931), and one new name, Litonotus dragescoi nom. n. (basionym L. fasciolatus Dragesco 1966), are suggested.  相似文献   

20.
ABSTRACT. In order to re‐evaluate the systematics of sessilid peritrich ciliates, small subunit (SSU) rRNA gene sequences were determined for 12 species belonging to five genera: Vorticella, Pseudovorticella, Epicarchesium, Zoothamnium, and Zoothamnopsis. Phylogenetic trees were deduced using Bayesian inference, maximum parsimony, and maximum likelihood methods. The phylogenetic analyses suggest that (1) sessilids which have stalks with continuous myonemes that contract in a zig‐zag fashion form a separate clade from those which have stalks that contract independently and in a spiral fashion, supporting the separation of the family Zoothamniidae from the family Vorticellidae and (2) Epicarchesium and Pseudovorticella, both of which have reticulate silverline systems, are more closely related to each other than to other vorticellids, suggesting that differences in the silverline system (i.e. transverse vs. reticulate) may be the result of genuine evolutionary divergence among sessilid peritrichs. However, the newly sequenced Zoothamnopsis sinica, which has a reticulate silverline pattern, nests within the unresolved Zoothamnium species that have transverse silverline patterns. Thus, there were at least two evolutions of the reticulate silverline pattern character state from a plesiomorphic transverse state in the peritrichid ciliates. The molecular work demonstrates the genus Zoothamnium to be paraphyletic in relation to morphological studies, and suggests that Astylozoon, Opisthonecta, and Vorticella microstoma possibly share a SSU rRNA secondary structure in the helix E10‐1 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号