首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In susceptible insects, Cry toxin specificity correlates with receptor recognition. In previous work, we characterized an scFv antibody (scFv73) that inhibits binding of Cry1A toxins to cadherin-like receptor. The CDR3 region of scFv73 shared homology with an 8-amino acid epitope ((869)HITDTNNK(876)) of the Manduca sexta cadherin-like receptor Bt-R(1) (Gomez, I., Oltean, D. I., Gill, S. S., Bravo, A., and Soberón, M. (2001) J. Biol. Chem. 276, 28906-28912). In this work, we show that the previous sequence of scFv73 CDR3 region was obtained from the noncoding DNA strand. However, most importantly, both scFv73 CDR3 amino acid sequences of the coding and noncoding DNA strands have similar binding capabilities to Cry1Ab toxin as Bt-R(1) (869)HITDTNNK(876) epitope, as demonstrated by the competition of scFv73 with binding to Cry1Ab with synthetic peptides with amino acid sequences corresponding to these regions. Using synthetic peptides corresponding to three exposed loop regions of domain II of Cry1Aa and Cry1Ab toxins, we found that loop 2 synthetic peptide competed with binding of scFv73 to Cry1A toxins in Western blot experiments. Also, loop 2 mutations that affect toxicity of Cry1Ab toxin are affected in scFv73 binding. Toxin overlay assays of Cry1A toxins to M. sexta brush border membrane proteins showed that loop 2 synthetic peptides competed with binding of Cry1A toxins to cadherin-like Bt-R(1) receptor. These experiments identified loop 2 in domain II of as the cognate binding partner of Bt-R(1) (869)HITDTNNK(876). Finally, 10 amino acids from beta-6-loop 2 region of Cry1Ab toxin ((363)SSTLYRRPFNI(373)) showed hydropathic pattern complementarity to a 10-amino acid region of Bt-R(1) ((865)NITIHITDTNN(875)), suggesting that binding of Cry1A toxins to Bt-R(1) is determined by hydropathic complementarity and that the binding epitope of Bt-R(1) may be larger than the one identified by amino acid sequence similarity to scFv73.  相似文献   

2.
In susceptible lepidopteran insects, aminopeptidase N and cadherin-like proteins are the putative receptors for Bacillus thuringiensis (Bt) toxins. Using phage display, we identified a key epitope that is involved in toxin-receptor interaction. Three different scFv molecules that bind Cry1Ab toxin were obtained, and these scFv proteins have different amino acid sequences in the complementary determinant region 3 (CDR3). Binding analysis of these scFv molecules to different members of the Cry1A toxin family and to Escherichia coli clones expressing different Cry1A toxin domains showed that the three selected scFv molecules recognized only domain II. Heterologous binding competition of Cry1Ab toxin to midgut membrane vesicles from susceptible Manduca sexta larvae using the selected scFv molecules showed that scFv73 competed with Cry1Ab binding to the receptor. The calculated binding affinities (K(d)) of scFv73 to Cry1Aa, Cry1Ab, and Cry1Ac toxins are in the range of 20-51 nm. Sequence analysis showed this scFv73 molecule has a CDR3 significantly homologous to a region present in the cadherin-like protein from M. sexta (Bt-R(1)), Bombyx mori (Bt-R(175)), and Lymantria dispar. We demonstrated that peptides of 8 amino acids corresponding to the CDR3 from scFv73 or to the corresponding regions of Bt-R(1) or Bt-R(175) are also able to compete with the binding of Cry1Ab and Cry1Aa toxins to the Bt-R(1) or Bt-R(175) receptors. Finally, we showed that synthetic peptides homologous to Bt-R(1) and scFv73 CDR3 and the scFv73 antibody decreased the in vivo toxicity of Cry1Ab to M. sexta larvae. These results show that we have identified the amino acid region of Bt-R(1) and Bt-R(175) involved in Cry1A toxin interaction.  相似文献   

3.
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gomez, I., Sanchez, J., Miranda, R., Bravo A., Soberon, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion.  相似文献   

4.
5.
The insecticidal Cry toxins from Bacillus thuringiensis bacteria are pore-forming toxins that lyse midgut epithelial cells in insects. We have previously proposed that they form pre-pore oligomeric intermediates before membrane insertion. For formation of these oligomers coiled-coil structures are important, and helix alpha-3 from Cry toxins could form coiled-coils. Our data shows that different mutations in helix alpha-3 are affected in pore formation and toxicity. Mutants affected in toxicity bind Bt-R(1) receptor with a similar K(D) as the wild type toxin but do not form oligomers nor induce pore formation in planar lipid bilayers, indicating that the pre-pore oligomer is an obligate intermediate in the intoxication of Cry1Ab toxin and that interaction of monomeric Cry1Ab with Bt-R(1) is not enough to kill susceptible larvae.  相似文献   

6.
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies.  相似文献   

7.
The cadherin protein Bt-R(1a) is a receptor for Bacillus thuringiensis Cry1A toxins in Manduca sexta. Cry1Ab toxin is reported to bind specific epitopes located in extracellular cadherin repeat (CR) 7 and CR11 on Bt-R(1) (Gomez, B., Miranda-Rios, J., Riudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., and Soberon, M. (2002) J. Biol. Chem. 277, 30137-30143; Dorsch, J. A., Candas, M., Griko, N., Maaty, W., Midboe, E., Vadlamudi, R., and Bulla, L. (2002) Insect Biochem. Mol. Biol. 32, 1025-1036). We transiently expressed CR domains of Bt-R(1a) in Drosophila melanogaster Schneider 2 (S2) cells as fusion peptides between a signal peptide and a terminal region that included membrane-proximal, membrane-spanning, and cytoplasmic domains. A domain consisting of CR11 and 12 was the minimal (125)I-Cry1Ab binding region detected under denaturing conditions. Only CR12 was essential for Cry1Ab binding and cytotoxicity to S2 cells when tested under native conditions. Under these conditions expressed CR12 bound (125)I-Cry1Ab with high affinity (K(com) = 2.9 nm). Flow cytometry assays showed that expression of CR12 conferred susceptibility to Cry1Ab in S2 cells. Derivatives of Bt-R(1a) with separate deletions of CR7, 11, and 12 were expressed in S2 cells. Only deletion of CR12 caused loss of Cry1Ab binding and cytotoxicity. These results demonstrate that CR12 is the essential Cry1Ab binding component on Bt-R(1) that mediates Cry1Ab-induced cytotoxicity.  相似文献   

8.
Bacillus thuringiensis subs israelensis produces Cry toxins active against mosquitoes. Receptor binding is a key determinant for specificity of Cry toxins composed of three domains. We found that exposed loop alpha-8 of Cry11Aa toxin, located in domain II, is an important epitope involved in receptor interaction. Synthetic peptides corresponding to exposed regions in domain II (loop alpha-8, beta-4 and loop 3) competed binding of Cry11Aa to membrane vesicles from Aedes aegypti midgut microvilli. The role of loop alpha-8 of Cry11A in receptor interaction was demonstrated by phage display and site-directed mutagenesis. We isolated a peptide-displaying phage (P5.tox), that recognizes loop alpha-8 in Cry11Aa, interferes interaction with the midgut receptor and attenuates toxicity in bioassay. Loop alpha-8 mutants affected in toxicity and receptor binding were characterized.  相似文献   

9.
Pore-forming toxins are biological weapons produced by a variety of living organisms, particularly bacteria but also by insects, reptiles, and invertebrates. These proteins affect the cell membrane of their target, disrupting permeability and leading eventually to cell death. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. The Cry toxins produced by Bacillus thuringiensis are widely used as insecticides. These proteins have been recognized as pore-forming toxins, and their primary action is to lyse midgut epithelial cells in their target insect. To exert their toxic effect, a prepore oligomeric intermediate is formed leading finally to membrane-inserted oligomeric pores. To understand the role of Cry oligomeric pre-pore formation in the insecticidal activity we isolated point mutations that affected toxin oligomerization but not their binding with the cadherin-like, Bt-R(1) receptor. We show the helix alpha-3 in domain I contains sequences that could form coiled-coil structures important for oligomerization. Some single point mutants in this helix bound Bt-R(1) receptors with similar affinity as the wild-type toxin, but were affected in oligomerization and were severally impaired in pore formation and toxicity against Manduca sexta larvae. These data indicate the pre-pore oligomer and the toxin pore formation play a major role in the intoxication process of Cry1Ab toxin in insect larvae.  相似文献   

10.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with (125)I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [K(com)] = 1.1 nM) for (125)I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for (125)I-Cry1Ab binding sites, though the K(com) values ranged from 179 to 304 nM. Cry1Ab competed for (125)I-Cry1Ac binding sites (K(com) = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the (125)I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

11.
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins.  相似文献   

12.
齐佳  刘晨曦  吴孔明 《昆虫知识》2012,49(5):1397-1405
苏云金芽孢杆菌(Bacillus thuringiensis,Bt)产生的内毒素具有杀虫活性,Cry2Ab毒素作为Bt棉花的杀虫活性蛋白,其在靶标昆虫体内的结合受体及作用位点尚不清楚,本研究采用噬菌体展示(phage display)的方法,经4轮的"吸附—洗脱—扩繁"筛选,并对阳性克隆所携带的外源DNA片段进行序列测定后,得到2段能够与活化Cry2Ab毒素相互作用的多肽序列,通过酶联免疫结合试验(ELISA)进一步证明,这2段多肽序列与活化Cry2Ab毒素具有较高的亲和力和特异性,结果表明,利用该方法能够由噬菌体随机肽库中高效捕获亲和序列,筛选到与活化Cry2Ab毒素具有高亲和力的多肽,该序列可以模拟Cry2Ab毒素的受体表位,为进一步研究Cry2Ab毒素作用机制奠定了基础,并为今后田间抗性基因频率检测,以及毒素—受体作用机制研究工作提供更有力的技术支持。  相似文献   

13.
The binding properties of Bacillus thuringiensis toxins to brush border membrane vesicles of Dipel-resistant and -susceptible Ostrinia nubilalis larvae were compared using ligand-toxin immunoblot analysis, surface plasmon resonance (SPR), and radiolabeled toxin binding assays. In ligand-toxin immunoblot analysis, the number of Cry1Ab or Cry1Ac toxin binding proteins and the relative toxin binding intensity were similar in vesicles from resistant and susceptible larvae. Surface plasmon resonance with immobilized activated Cry1Ab toxin indicated that there were no significant differences in binding with fluid-phase vesicles from resistant and susceptible larvae. Homologous competition assays with radiolabeled Cry1Ab and Cry1Ac toxin and vesicles from resistant and susceptible larvae resulted in similar toxin dissociation constants and binding site concentrations. Heterologous competition binding assays indicated that Cry1Ab and Cry1Ac completely competed for binding, thus they share binding sites in the epithelium of the larval midguts of O. nubilalis. Overall, the binding analyses indicate that resistance to Cry1Ab and Cry1Ac in this Bt-resistant strain of O. nubilalis is not associated with a loss of toxin binding.  相似文献   

14.
We report the computational structural simulation of the Cry1Ab19 toxin molecule from B. thuringiensis BtX-2 based on the structure of Cry1Aa1 deduced by x-ray diffraction. Validation results showed that 93.5% of modeled residues are folded in a favorable orientation with a total energy Z-score of -8.32, and the constructed model has an RMSD of only 1.13. The major differences in the presented model are longer loop lengths and shortened sheet components. The overall result supports the hierarchical three-domain structural hypothesis of Cry toxins and will help in better understanding the structural variation within the Cry toxin family along with facilitating the design of domain-swapping experiments aimed at improving the toxicity of native toxins.  相似文献   

15.
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gómez, I., Sánchez, J., Miranda, R., Bravo A., Soberón, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion.  相似文献   

16.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for 125I-Cry1Ab binding sites, though the Kcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

17.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

18.
Toxin-binding proteins of insect midgut epithelial cells are associated with insect resistance to Bacillus thuringiensis (Bt) Cry toxins. A 5378 nt cDNA encoding a 1717 amino acid putative midgut cadherin-like glycoprotein and candidate Cry1Ab toxin-binding protein was characterized from Ostrinia nubilalis. Intraspecific alignment of partial O. nubilalis cadherin gene sequences identified variance within proposed Cry1A toxin binding region 2 (TBR2), 1328IPLQTSILVVT[I/V] N1340, and flanking Cry1A toxin binding region 1 (TBR1), 861DIEIEIIDTNN871. DNA sequence and PCR-RFLP detected single nucleotide polymorphism between cadherin alleles, and pedigree analysis demonstrated Mendelian inheritance. A population sample from Mead, Nebraska showed allelic polymorphism. These assays may be useful for linkage mapping and field surveillance of wild populations and of O. nubilalis.  相似文献   

19.
Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin.  相似文献   

20.
The specific role of cadherin receptors in cytotoxicity involving Cry toxins of Bacillus thuringiensis and their interactions with cell membrane has not been defined. To elucidate the involvement of toxin-membrane and toxin-receptor interactions in cytotoxicity, we established a cell-based system utilizing High Five insect cells stably expressing BT-R1, the cadherin receptor for Cry1Ab toxin. Cry1Ab toxin is incorporated into cell membrane in both oligomeric and monomeric form. Monomeric toxin binds specifically to BT-R1 whereas incorporation of oligomeric toxin is nonspecific and lipid dependent. Toxin oligomers in the cell membrane do not produce lytic pores and do not kill insect cells. Rather, cell death correlates with binding of the Cry1Ab toxin monomer to BT-R1, which apparently activates a Mg2+-dependent cellular signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号