首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural anti-NOR antibodies are common in human sera and agglutinate human erythrocytes of a rare NOR phenotype. The NOR phenotype-related antigens are unique neutral glycosphingolipids recognized by these antibodies and Griffonia simplicifolia IB4 isolectin (GSL-IB4). The oligosaccharide chains of NOR glycolipids are terminated by Galalpha1-4GalNAcbeta1-3Galalpha units. To characterize the specificity of anti-NOR antibodies and compare it with specificities of GSL-IB4 and known anti-Galalpha1,3Gal antibodies, alpha-galactosylated saccharides and saccharide-polyacrylamide conjugates were used. New synthetic oligosaccharides, corresponding to the terminal di- and trisaccharide sequence of NOR glycolipids and the conjugate of the NOR-tri with HSA were included. These compounds were tested by microtiter plate ELISA and hemagglutination inhibition. Anti-NOR antibodies reacted most strongly with Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), and over 100 times less strongly with Galalpha1-4GalNAc (NOR-di). The antibodies reacted also with Galalpha1-4Gal and Galalpha1-4Galbeta1-4GlcNAc, similarly as with NOR-di but not with other tested compounds. In turn, anti-Galalpha1,3Gal antibodies reacted most strongly with Galalpha1-3Gal and were very weakly inhibited by the NOR-related oligosaccharides (weaker than by galactose), and NOR-tri was less active than NOR-di. GSL-IB4 reacted with all tested alpha-galactosylated saccharides and conjugates, including the similarly active NOR-tri and NOR-di. These results showed that anti-NOR represent a new species of anti-alpha-galactosyl antibodies with high affinity for the Galalpha1-4GalNAcbeta1-3Gal sequence present in rare NOR erythrocytes.  相似文献   

2.
The rare NOR erythrocytes, which are agglutinated by most human sera, contain unique glycosphingolipids (globoside elongation products) terminating with the sequence Galalpha1-4GalNAcbeta1-3Gal- recognized by common natural human antibodies. Anti-NOR antibodies were isolated from several human sera by affinity procedures, and their specificity was tested by inhibition of antibody binding to NOR-tri-polyacrylamide (PAA) conjugate (ELISA) by the synthetic oligosaccharides, Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), Galalpha1-4GalNAc (NOR-di), Galalpha1-4Galbeta1-3Galbeta1-4Glc ((Gal)3Glc), and Galalpha1-4Gal (P1-di). Two major types of subspecificity of anti-NOR antibodies were found. Type 1 antibodies were found to react strongly with (Gal)3Glc and NOR-tri and weakly with P1-di and NOR-di, which indicated specificity for the trisaccharide epitope Galalpha1-4Gal/GalNAcbeta1-3Gal. Type 2 antibodies were specific to Galalpha1-4GalNAc, because they were inhibited most strongly by NOR-tri and NOR-di and were not (or very weakly) inhibited by (Gal)3Glc and P1-di. Monoclonal anti-NOR antibodies were obtained by immunizing mice with NOR-tri-human serum albumin (HSA) conjugate and were found to have type 2 specificity. All anti-NOR antibodies reacted specifically with NOR glycolipids on thin-layer plates. The cross-reactivity of type 1 anti-NOR antibodies with Galalpha1-4Gal drew attention to a possible antigenic relationship between NOR and blood group P system glycolipids. The latter glycolipids include Pk (Galalpha1-4Galbeta1-4Glc-Cer) present in all normal erythrocytes and P1 (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) present only in P1 erythrocytes. Sera of some P2 (P1-negative) persons contain natural anti-P1 antibodies. This prompted us to test the specificity of anti-P1 antibodies. Natural human anti-P1 isolated from serum of P2 individual and mouse monoclonal anti-P1 were best inhibited by Galalpha1-4Galbeta1-4GlcNAc (P1-tri) and did not react with NOR-tri and NOR-di. Monoclonal anti-P1 bound to Pk and P1 glycolipids and not to NOR glycolipids. These results indicated an entirely different specificity of anti-NOR and anti-P1 antibodies. Human serum samples differed in the content of anti-alpha-galactosyl antibodies, including both types of anti-NOR. In the sera of some individuals, type 1 or type 2 anti-NOR antibodies dominated, and other samples contained mixtures of both types of anti-NOR. The biological significance of these new abundant anti-alpha-galactosyl antibodies still awaits elucidation.  相似文献   

3.
NOR is a rare inheritable polyagglutination phenomenon that has been described in two families. Our recent studies on these erythrocytes showed they contained at least two unique neutral glycosphingolipids, and based on their reactivity with Griffonia simplicifolia IB4 (GSL-IB4) isolectin (Kusnierz-Alejska, G., Duk, M., Storry, J. R., Reid, M. E., Wiecek, B., Seyfried, H., and Lisowska, E. (1999) Transfusion 39, 32-38), both oligosaccharide chains terminated with an alpha-galactose residue. The reactivity with GSL-IB4 suggested that these oligosaccharide chains terminated with a Galalpha1-->3Gal- sequence and that anti-NOR agglutinins were common human anti-Galalpha1-->3Gal xenoantibodies. In this report we describe the structure of one NOR component (NOR1) that migrated on thin-layer chromatographic plates in the region of pentaglycosylceramides. Treatment of this sample with alpha-galactosidase and beta-N-acetylhexosaminidase was followed by high-performance thin-layer chromatography with product detection by lectins and the anti-Gb4 monoclonal antibody. The results suggested that NOR1 was an alpha-galactosylated Gb4Cer with a beta-N-acetylhexosaminidase-resistant GalNAc residue. Gas phase disassembly by ion trap mass spectrometry analysis showed the sequence to be Hex1-->4HexN1-->3Hex1-->4Hex1-->4Hex linked to a ceramide composed of C18 sphingosine and a C24 monounsaturated fatty acid. Together these data indicate NOR1 to be a novel Galalpha1-->4GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4 Glc-Cer structure. Additionally it has been shown that NOR glycolipids are recognized by human antibodies that were distinct from the known anti-Galalpha1-->3Gal xenoantibodies.  相似文献   

4.
The polyagglutinable erythrocytes NOR contain unusual neutral glycolipids reactive with anti-NOR antibodies. The disaccharide alpha-D-Galp-(1-->4)-D-GalpNAc and the trisaccharide alpha-D-Galp-(1-->4)-beta-D-GalpNAc-(1-->3)-D-Gal corresponding to the non-reducing end of a NOR glycolipid (NOR1) were chemically synthesized. The syntheses were based on a common (1-->4)-beta-D-GalNAc precursor, and utilized benzyl glycoside and benzyl ether functions for persistent blocking of hydroxyls. The alpha-D-Galp-(1-->4)-beta-D-GalpNAc structural element has been found only recently in Nature, and derivatives thereof have not been synthesized before. Both the synthesized oligosaccharides inhibited specifically human anti-NOR antibodies, the trisaccharide being 300 times more active than the disaccharide.  相似文献   

5.
Rare polyagglutinable NOR erythrocytes contain three unique globoside (Gb4Cer) derivatives, NOR1, NORint, and NOR2, in which Gal(α1–4), GalNAc(β1–3)Gal(α1–4), and Gal(α1–4)GalNAc(β1–3)Gal(α1–4), respectively, are linked to the terminal GalNAc residue of Gb4Cer. NOR1 and NOR2, which both terminate with a Gal(α1–4)GalNAc- sequence, react with anti-NOR antibodies commonly present in human sera. While searching for an enzyme responsible for the biosynthesis of Gal(α1–4)GalNAc, we identified a mutation in the A4GALT gene encoding Gb3/CD77 synthase (α1,4-galactosyltransferase). Fourteen NOR-positive donors were heterozygous for the C>G mutation at position 631 of the open reading frame of the A4GALT gene, whereas 495 NOR-negative donors were homozygous for C at this position. The enzyme encoded by the mutated gene contains glutamic acid instead of glutamine at position 211 (substitution Q211E). To determine whether this mutation could change the enzyme specificity, we transfected a teratocarcinoma cell line (2102Ep) with vectors encoding the consensus Gb3/CD77 synthase and Gb3/CD77 synthase with Glu at position 211. The cellular glycolipids produced by these cells were analyzed by flow cytometry, high-performance thin-layer chromatography, enzymatic degradation, and MALDI-TOF mass spectrometry. Cells transfected with either vector expressed the P1 blood group antigen, which was absent from untransfected cells. Cells transfected with the vector encoding the Gb3/CD77 synthase with Glu at position 211 expressed both P1 and NOR antigens. Collectively, these results suggest that the C631G mutation alters the acceptor specificity of Gb3/CD77 synthase, rendering it able to catalyze synthesis of the Gal(α1–4)Gal and Gal(α1–4)GalNAc moieties.  相似文献   

6.
Rare polyagglutinable NOR erythrocytes contain unusual globoside extention products terminating with a Galα1-4GalNAcβ1-3Gal- unit. This trisaccharide epitope is recognized by recently characterized antibodies naturally occurring in most human sera (Duk et al., Glycobiology, 15, 109, 2005). These antibodies represent two major types of fine specificity. All these antibodies are most strongly inhibited by Galα1-4GalNAcβ1-3Gal (NOR-tri), and weakly by Galα1-4Gal. However, the type 1 antibodies are strongly inhibited by Galα1-4Galβ1-3Gal-R and weakly by Galα1-4GalNAc, while the type 2 antibodies show the opposite reactivities with these two oligosaccharides. Similar antibodies have now been found in horse, rabbit and pig sera. The antibodies were purified from animal sera by affinity chromatography on Galα1-4GalNAcβ1-3Gal-human serum albumin(HSA)-Sepharose 4B conjugate. The specificity of the antibodies was determined by binding to ELISA plates coated with several α-galactosylated oligosaccharide-polyacrylamide (PAA) or -HSA conjugates and by inhibition with synthetic oligosaccharides. The purified antibodies bound specifically to conjugates containing NOR-tri. The inhibition of binding showed that the animal sera also contain two types of anti-NOR antibodies: type 2 was found in the horse serum, and a mixture of both types was present in rabbit and pig serum. These results indicate that anti-NOR, a new and distinct kind of anti-αGal antibody, are present in animal sera and show similar specificties and diversity as their counterparts found in human sera.  相似文献   

7.
In a previous paper, we reported the presence of globoside as a major neutral glycolipid in PC12 pheochromocytoma cells [Ariga, T., Macala, L. J., Saito, M., Margolis, R. K., Greene, L. A., Margolis, R. U., & Yu, R. K. (1988) Biochemistry 27, 52-58]. Recently, we found that subcloned PC12h cells accumulated another unusual neutral glycolipid. In order to characterize this glycolipid, PC12h cells were subcutaneously transplanted into rats. The induced tumor tissue accumulated two major neutral glycolipids, which were purified by Iatrobeads column and preparative thin-layer chromatographies. One of the glycolipids was found to be globoside, and the other had a globotriaosyl structure with an additional terminal Gal alpha 1-3 residue. Its structure was determined by fast atom bombardment mass spectrometry, two-dimensional proton nuclear magnetic resonance spectrometry (2D NMR), permethylation study, sequential degradation with exoglycosidase, and mild acid hydrolysis to be Gal(alpha 1-3)Gal(alpha 1-4)Gal(beta 1-4)Glc(beta 1-1')Cer.  相似文献   

8.
Extracts of the human intestinal tumor cell line SW1116 were able to stimulate the incorporation of (14C) fucose from GDP-(14C) fucose into organically soluble glycolipid. The reaction required a purified glycolipid preparation from human meconium as lipid acceptor. The active glycolipid co-migrated with standard globoside on high performance thin-layer chromatography (HPTLC) and had molecular species (M + H) under fast-atom bombardment mass spectrometry of 1199, 1245 and 1269. Globoside itself was inactive and asialo GM1b had low activity. The radioactive products co-purified with Lewis a and Lewis b and co-migrated principally (60-90%) with Lewis b monoclonal antibody binding cellular glycolipids on HPTLC. Analysis of fucosidase digests suggested the presence of two different fucosyl-hexose linkages one of which was susceptible to cleavage. We conclude that the data are consistent with fucosylation of lactotetraosyl ceramide to Lewis a and Lewis b antigenic glycolipids.  相似文献   

9.
The exposure of several major red-cell glycolipids to galactose oxidase was studied by oxidizing the cells with the enzyme and reducing them with NaB2H4. After isolation, the deuterium label was detected by mass fragmentography. 60-70% globoside in human and porcine erythrocytes was exposed as measured by this method. In contrast, asialo-GM2 in guinea-pig erythrocytes and Forssman glycolipid in sheep erythrocytes were mainly in a cryptic state. Neuraminidase treatment increased the incorporation of deuterium label to asialo-GM2 4-8-fold. A similar effect was seen in Forssman glycolipid when sheep red cells were labeled with the neuraminidase/galactose oxidase/NaB3H4 method. In contrast, the increase in labeling was only about 10-40% in porcine and human globosides, which were efficiently exposed to galactose oxidase already in native red cells.  相似文献   

10.
Eighteen of 34 endemic meningococcal case strains were of the L8 lipooligosaccharide (LOS) type; four of these were both L3 and L7 (L3,7), and seven were L1. L1 structures arose by alternative terminal Gal substitutions of lactosyl diheptoside L8 structures, as determined by electrospray ionization and other mass spectrometric techniques, and enzymatic and chemical degradations (Structures L1 and L1a). [see text for structure] The more abundant molecule, designated L1, had a trihexose globosyl alpha chain; the less abundant one, designated L1a, had a beta-lactosyl alpha chain and a parallel alpha-lactosaminyl gamma chain. A P(k) globoside (Galalpha1-->4Galbeta1-->4 Glc-R) monoclonal antibody bound 9/10 L1 strains, but a P(1) globoside (Galalpha1-->4Galbeta1-->4GlcNAc-R) mAb bound none of them. alpha-Galactosidase caused loss of both L1 structures and creation of L8 structures; beta-galactosidase caused loss of the L8 determinant. The L1/P(k) glycose was partially sialylated. Some LOS also had unsubstituted basal beta-GlcNAc additions. These structural relationships explain co-expression of L8, L1, and L3,7 serotypes.  相似文献   

11.
We have cloned Gb(3) synthase, the key alpha1, 4-galactosyltransferase in globo-series glycosphingolipid (GSL) synthesis, via a phenotypic screen, which previously yielded iGb(3) synthase, the alpha1,3-galactosyltransferase required in isoglobo-series GSL (Keusch, J. J., Manzella, S. M., Nyame, K. A., Cummings, R. D., and Baenziger, J. U. (2000) J. Biol. Chem. 33). Both transferases act on lactosylceramide, Galbeta1,4Glcbeta1Cer (LacCer), to produce Gb(3) (Galalpha1,4LacCer) or iGb(3) (Galalpha1, 3LacCer), respectively. GalNAc can be added sequentially to either Gb(3) or iGb(3) yielding globoside and Forssman from Gb(3), and isogloboside and isoForssman from iGb(3). Gb(3) synthase is not homologous to iGb(3) synthase but shows 43% identity to a human alpha1,4GlcNAc transferase that transfers a UDP-sugar in an alpha1, 4-linkage to a beta-linked Gal found in mucin. Extensive homology (35% identity) is also present between Gb(3) synthase and genes in Drosophila melanogaster and Arabidopsis thaliana, supporting conserved expression of an alpha1,4-glycosyltransferase, possibly Gb(3) synthase, throughout evolution. The isolated Gb(3) synthase cDNA encodes a type II transmembrane glycosyltransferase of 360 amino acids. The highest tissue expression of Gb(3) synthase RNA is found in the kidney, mesenteric lymph node, spleen, and brain. Gb(3) glycolipid, also called P(k) antigen or CD77, is a known receptor for verotoxins. CHO cells that do not express Gb(3) and are resistant to verotoxin become susceptible to the toxin following transfection with Gb(3) synthase cDNA.  相似文献   

12.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

13.
14.
To further define the molecules that may mediate spontaneous abortion due to maternal-fetal blood group incompatibility within the P blood group system, we have examined the fine specificities of maternal antibodies and the glycolipid antigens from the placenta of a P infant born to a Pk1 mother. Maternal antibodies obtained during therapeutic plasmapheresis were analyzed to determine their reactivities with placental glycolipid extracts on thin-layer plates. Second antibodies specific for IgM, IgG, and IgA revealed immunoglobulins of all of these classes strongly reactive with one major placental glycolipid that comigrates with globoside. GC/MS analysis confirmed that the major P-active pentaglycosylceramide of placenta has the same structure as that previously shown for the P antigen of red blood cells: GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc-Cer. Serum antibodies partially purified by affinity chromatography on globoside-octyl-Sepharose specifically recognize glycolipids that contain terminal GalNAc beta 1-3Gal . . . residues and also recognize the same sequence as an internal determinant in some, but not all, glycolipids with extended globoside core regions. Thus, in the blood group P incompatible fetus, the major P antigen present in placenta has the same carbohydrate structure as the P antigen present in fetal and adult erythrocytes and might be a target for the maternal immune system.  相似文献   

15.
T Ariga  K Yoshida  K Nemoto  M Seki  N Miyatani  R K Yu 《Biochemistry》1991,30(32):7953-7961
We have studied the glycolipid composition of six different murine myelogenous leukemias as well as that of T-cell leukemias and normal spleen cells. Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC) and an HPTLC overlay method. Murine myelogenous leukemias were found to contain globo- and ganglio-series neutral glycolipids, e.g., glucosylceramide (Glc-cer), lactosylceramide (Lac-cer), globotriaosylceramide (Gb3), globoside (Gb4), Forssman glycolipid (Gb5), and asialo-GM1 (GA1). Monoblastic leukemia cells contained increased proportions of Gb3, Gb4, Gb5, and GA1. Monocytic and myelomonocytic leukemia cells contained increased proportions of Glc-cer and Lac-cer. Especially, Glc-cer accounted for approximately 60% of the total neutral glycolipids in monocytic leukemia cells. Gb3 was the major neutral glycolipid in reticulum cell neoplasm type A, and it accounted for approximately 75% of the neutral glycolipids. GA1 was the major neutral glycolipid in myeloblastic and granulocytic leukemia cells as well as T-cell leukemias. Especially, granulocytic leukemia cells contained predominantly GA1, and it accounted for approximately 80% of the total neutral glycolipids. The pattern of gangliosides in myelogenous leukemias was more complex when compared with that of the neutral glycolipids; murine myelogenous leukemias contained at least 13 gangliosides, including such major gangliosides as GM1, GM1b containing N-acetyl neuraminic acid and N-glycolyl neuraminic acid, and Ga1NAc-GM1b. Alterations of glycolipid composition in murine myeloid leukemias may be associated with cellular differentiation and maturation, and therefore these characteristic glycolipid species may be regarded as markers for specific populations of leukemia cells.  相似文献   

16.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4Glc) and isoglobotetraose (GalNAcbeta1-->3Galalpha1-->3Galbeta1-->4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant beta-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

17.
M Naiki  D M Marcus 《Biochemistry》1975,14(22):4837-4841
The erythrocyte PK and P blood group antigens have been identified as ceramide trihexoside (CTH), Gal-(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)Glc-Cer, and globoside, GalN-Ac(beta, 1 leads to 3)Gal(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)Glc-Cer, respectively, and the following structure has been proposed for the P1 antigen: Gal(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)GlcNAc(beta, 1 leads to 3)Gal(beta, 1 leads to 4)Glc-Cer. Although the P1 and PK determinants have identical terminal disaccharides, CTH did not inhibit anti-P1. The P1 glycolipid and hydatid cyst glycoprotein inhibited the agglutination of P1K erythrocytes by anti-P1 and unabsorbed anti-P1PPK sera, but neither antigen inhibited a specific anti-PK serum. The P1 and PK glycolipids were equally effective in inhibiting the hemagglutinating activity of a lectin with alpha-galactosyl specificity obtained from ova of Salmo trutta. Anti-P sera were inhibited most effectively by human erythrocyte globoside, and to a lesser extent by Forssman glycolipid and rat kidney globoside. In the latter glycolipid the linkage between the internal galactosyl residues is alpha, 1 leads to 3, rather than alpha, 1 leads to 4, as in erythrocyte globoside. No cross-reactions between P and P1 or PK antigens were detected. New hypotheses are offered to explain the genetic regulation and biosynthesis of the P1, P, and PK antigens.  相似文献   

18.
Methylation analysis of ceramide tetrasaccharide isolated from human erythrocytes gave acetates of 2,3,6-tri-O-methylgalactitol and 2,4,6-tri-O-methylgalactitol in a ratio of 1:1, and about 50% of the galactose was oxidized by periodate. Rat kidney ceramide tetrasaccharide gave, in contrast, a much larger proportion of the acetates of 2,4,6-tri-O-methylgalactitol (ratio 1:0.3), and less than 20% of the galactose was oxidized by periodate. Sequential degradation by beta-N-acetylhexosaminidase, alpha-galactosidase, and beta-galactosidase showed ceramide tetrasaccharides to have identical carbohydrate sequences and anomeric structures. The major part of ceramide trihexoside derived from rat kidney ceramide tetrasaccharide migrated on thin-layer chromatography more slowly than that derived from other ceramide tetrasaccharides. The structure of a major part of rat kidney ceramide tetrasaccharide was thus determined to be GalNAcbeta(1-->3)Galalpha(1-->3)Galbeta(1-->4)Glcbeta(1-->1)Cer, whereas other ceramide tetrasaccharides have Galalpha(1-->4) structure at the penultimate residue.  相似文献   

19.
We have critically addressed the question of lateral distribution of glycolipids in bilayer membranes, and the effect of glycolipid fatty acid chain length upon such distribution. For this purpose we synthesised the complex neutral glycosphingolipid, globoside, with spin-labelled fatty acid. Base hydrolysis to remove the natural fatty acid was found to deacetylate the GalNAc residue concomitantly, necessitating application of the synthetic route described for gangliosides by Neuenhofer et al. (Biochemistry 24, 525-532 (1985)). Globosides were produced with 18-carbon and 24-carbon fatty acids bearing a spin label at the C-16 position. Spin-labelled globosides were incorporated at 2 and 10 mol% into rigid, highly cooperative bilayer matrices of 1,2-dipalmitoylglycerophosphocholine (DPPC) and also into semi-fluid, non-cooperative membranes of DPPC/cholesterol. Recorded electron paramagnetic resonance (EPR) spectra were analysed by comparison with a library of standards representing samples of known composition. Spectra were manipulated using a computer program which permitted linear combination of standards to stimulate coexistence of laterally separated domains of different composition. The most important conclusions were as follows: (1) at least 80% of the globoside was definitely not confined to domains highly enriched in glycolipid, although there was evidence of binary-phase separation in the rigid DPPC/globoside matrix; (2) the presence of 33 mol% cholesterol reduced the evidence of globoside phase separation; (3) there was remarkably little difference in results whether the globoside fatty acid chain length was similar to that of the phospholipid host matrix or eight carbons longer. Temperature profiles derived over the phase-transition region of DPPC using spin-labelled globoside or an unattached amphiphilic spin label were consistent with these findings. The same systems lent themselves to consideration of the role of glycolipid fatty acid chan length and cholesterol in determining glycolipid crypticity in membranes: (1) polyclonal anti-globoside IgG bound to globoside in DPPC liposomes without inducing agglutination. (2) The same antibodies did agglutinate DPPC/cholesterol liposomes bearing globoside. (3) The effect of cholesterol probably was upon glycolipid dynamics or attitude in the membrane, rather than upon distribution. (4) These observations were basically unaffected by the choice of 18-carbon vs. 24-carbon glycolipid fatty acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
One of the monoclonal (AH-6) antibodies prepared by hybridoma technique against human gastric cancer cell line MKN74 was found to react with a series of glycolipids having the Y determinant (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc). The structure of one such glycolipid isolated from human colonic cancer and from dog intestine was identified as lactodifucohexaosyl-ceramide (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide; IV3,III3Fuc2nLc4Cer). The hapten glycolipid did not react with monoclonal antibodies directed to Lea, Leb, and X-hapten structures, and the AH-6 antibody did not react with the X-hapten ceramide pentasaccharide (Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), H1 glycolipid (Fuc alpha 1 leads to 2Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), nor with glycolipids having the Leb (Fuc alpha 1 leads to 2Gal beta 1 leads to 3[Fuc alpha 1 leads 4]GlcNAc beta 1 leads to R) determinant. The antibody reacted with blood group O erythrocytes, but not with A erythrocytes. Immunostaining of thin layer chromatography with the monoclonal antibody AH-6 indicated that a series of glycolipids with the Y determinant is present in tumors and in O erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号