首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate of development of disease varies considerably among human immunodeficiency virus type 1 (HIV-1)-infected children. The reasons for these observed differences are not clearly understood but most probably depend on the dynamic interplay between the HIV-1 quasispecies virus population and the immune constraints imposed by the host. To study the relationship between disease progression and genetic diversity, we analyzed the evolution of viral sequences within six perinatally infected children by examining proviral sequences spanning the C2 through V5 regions of the viral envelope gene by PCR of blood samples obtained at sequential visits. PCR product DNAs from four sample time points per child were cloned, and 10 to 13 clones from each sample were sequenced. Greater genetic distances relative to the time of infection were found for children with low virion-associated RNA burdens and slow progression to disease relative to those found for children with high virion-associated RNA burdens and rapid progression to disease. The greater branch lengths observed in the phylogenetic reconstructions correlated with a higher accumulation rate of nonsynonymous base substitutions per potential nonsynonymous site, consistent with positive selection for change rather than a difference in replication kinetics. Viral sequences from children with slow progression to disease also showed a tendency to form clusters that associated with different sampling times. These progressive shifts in the viral population were not found in viral sequences from children with rapid progression to disease. Therefore, despite the HIV-1 quasispecies being a diverse, rapidly evolving, and competing population of genetic variants, different rates of genetic evolution could be found under different selective constraints. These data suggest that the evolutionary dynamics exhibited by the HIV-1 quasispecies virus populations are compatible with a Darwinian system evolving under the constraints of natural selection.  相似文献   

2.
We addressed the relationship between the origin and evolution of human immunodeficiency virus type 1 (HIV-1) variants and disease outcome in perinatally infected infants by studying the V3 regions of viral variants in samples obtained from five transmitting mothers at delivery and obtained sequentially over the first year of life from their infected infants, two of whom (rapid progressors) rapidly progressed to having AIDS. Phylogenetic analyses disclosed that the V3 sequences from each mother-infant pair clustered together and were clearly distinct from those of the other pairs. Within each pair, the child's sequences formed a monophyletic group, indicating that a single variant initiated the infection in both rapid and slow progressors. Plasma HIV-1 RNA levels increased in all five infants during their first months of life and then declined within the first semester of life only in the three slow progressors. V3 variability increased over time in all infants, but no differences in the pattern of V3 evolution in terms of potential viral phenotype were observed. The numbers of synonymous and nonsynonymous substitutions varied during the first semester of life regardless of viral load, CD4+-cell count, and disease progression. Conversely, during the second semester of life the rate of nonsynonymous substitutions was higher than that of synonymous substitutions in the slow progressors but not in the rapid progressors, thus suggesting a stronger host selective pressure in the former. In view of the proposal that V3 genetic evolution is driven mainly by host immune constraints, these findings suggest that while the immune response to V3 might contribute to regulating viral levels after the first semester of life, it is unlikely to play a determinant role in the initial viral decline soon after birth.  相似文献   

3.
The human immunodeficiency virus (HIV-1) envelope glycoprotein (GP) 120 interacts with CD4 and the CCR5 coreceptor for viral entry. The V3 loop in GP120 is a crucial region for determining coreceptor usage during viral entry, and a variety of amino acid substitutions has been observed in clinical isolates. To construct an HIV-1 V3 loop library, we chose 10 amino acid positions in the V3 loop and incorporated random combinations (27,648 possibilities) of the amino acid substitutions derived from 31 R5 viruses into the V3 loop of HIV-1(JR-FL) proviral DNA. The constructed HIV-1 library contained 6.6 x 10(6) independent clones containing a set of 0-10 amino acid substitutions in the V3 loop. To address whether restricted steric alteration in the V3 loop could confer resistance to an entry inhibitor, TAK-779, we selected entry inhibitor-resistant HIV-1 by increasing the concentration of TAK-779 from 0.10 to 0.30 microM in PM1-CCR5 cells with high expression of CCR5. The selected viruses at passage 8 contained five amino acid substitutions in the V3 loop without any other mutations in GP120 and showed 15-fold resistance compared with the parental virus. These results indicated that a certain structure of the V3 loop containing amino acid substitutions derived from 31 R5 viruses can contribute to the acquisition of resistance to entry inhibitors binding to CCR5. Taken together, this type of HIV-1 V3 loop library is useful for isolating and analyzing the specific biological features of HIV-1 with respect to alterations of the V3 loop structure.  相似文献   

4.
We examined the relationship between env sequence variation and disease progression in 10 human immunodeficiency virus type 1 (HIV-1)-seropositive subjects selected from a longitudinal cohort receiving zidovudine therapy. Five subjects were chosen for stable clinical status and CD4 counts (slow progressors), and five were selected for rapid clinical deterioration and CD4 count decline (rapid progressors). The slow progressors had significantly lower plasma viral RNA loads and greater lymphoproliferative responses to mitogens than the rapid progressors. DNA sequences representing the C1 through C3 regions of env were amplified from two peripheral blood mononuclear cell DNA samples from each subject separated by an average of 2.5 years. Molecular clones of these amplicons were then sequenced, and DNA sequence and deduced amino acid sequence distances were compared. Inter-time point sequence comparison showed a higher rate of sequence evolution for the rapid progressors in three of five matched pairs of rapid progressors and slow progressors and for the slow progressors in the remaining two subject pairs. However, intra-time point sequence comparisons showed that four of five slow progressors developed a more diverse quasispecies over time and one showed no change. In contrast, four of five rapid progressors showed no change in quasispecies diversity over time and one showed a significant decrease in diversity. The overall C1 through C3 region quasispecies diversity in the slow progressors at baseline was lower than that for the rapid progressors, but this difference was not significant at the follow-up time points. These diversity relationships were obscured if sequence analyses were limited to the 300-bp C2 to V3 region. Thus, HIV-1 quasispecies diversity increased over time in subjects with more functional immune systems.  相似文献   

5.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

6.
We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes.  相似文献   

7.
High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC]) therapy failed. Between 25,000–140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8–2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists.  相似文献   

8.
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although risk of progression may vary among patients carrying this allele. The interplay between HIV-1 evolutionary rate variation and risk of progression to AIDS in HLA-B*5701 subjects was studied using longitudinal viral sequences from high-risk progressors (HRPs) and low-risk progressors (LRPs). Posterior distributions of HIV-1 genealogies assuming a Bayesian relaxed molecular clock were used to estimate the absolute rates of nonsynonymous and synonymous substitutions for different set of branches. Rates of viral evolution, as well as in vitro viral replication capacity assessed using a novel phenotypic assay, were correlated with various clinical parameters. HIV-1 synonymous substitution rates were significantly lower in LRPs than HRPs, especially for sets of internal branches. The viral population infecting LRPs was also characterized by a slower increase in synonymous divergence over time. This pattern did not correlate to differences in viral fitness, as measured by in vitro replication capacity, nor could be explained by differences among subjects in T cell activation or selection pressure. Interestingly, a significant inverse correlation was found between baseline CD4+ T cell counts and mean HIV-1 synonymous rate (which is proportional to the viral replication rate) along branches representing viral lineages successfully propagating through time up to the last sampled time point. The observed lower replication rate in HLA-B*5701 subjects with higher baseline CD4+ T cell counts provides a potential model to explain differences in risk of disease progression among individuals carrying this allele.  相似文献   

9.
The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, , however, is not known. Application of the quasispecies theory to determine poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and . We found that with small mutation rates, the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that quantitatively captured data of viral diversification in HIV-1 patients, we estimated to be substitutions/site/replication, ∼2–6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-based approaches to describing HIV-1 evolution. Further, increased with the recombination rate, rendering HIV-1 less susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of may serve as a quantitative guideline for the use of mutagenic drugs against HIV-1.  相似文献   

10.
We studied the distribution of human immunodeficiency virus type 1 (HIV-1) DNA in CCR5-positive and -negative peripheral blood lymphocyte populations in HIV-1-infected individuals. While HIV-1 DNA in the CCR5-positive population showed no correlation with CD4 count, the increase of total HIV-1 DNA with lower CD4 count was mainly contributed by the increase of HIV-1 DNA in the CCR5-negative population. This might indicate the change in coreceptor usage from CCR5 to CXCR4 in later stages of disease progression. However, some of the samples with a high viral DNA load in the CCR5-negative population did not have any characteristic of the V3 loop sequence that is compatible with CXCR4 usage or the syncytium-inducing (SI) phenotype. We also did not find any known characteristic change predictive of the SI phenotype in V1 and V2 sequences. Our findings showed that there might be a shift in target cell populations during disease progression, and this shift was not necessarily associated with the genetic changes characteristic of CXCR4 usage.  相似文献   

11.
12.
When chronic hepatitis C virus (HCV) infections are complicated by acquisition of human immunodeficiency virus (HIV), liver disease appears to accelerate and serum levels of HCV RNA may rise. We hypothesized that HIV might affect the HCV quasispecies by decreasing both complexity (if HIV-induced immunosuppression lessens pressure for selecting HCV substitutions) and the ratio of nonsynonymous (d(N)) to synonymous (d(S)) substitutions, because d(N) may be lower (if there is less selective pressure). To test this hypothesis, we studied the evolution of HCV sequences in 10 persons with chronic HCV infection who seroconverted to HIV and, over the next 3 years, had slow or rapid progression of HIV-associated disease. From each subject, four serum specimens were selected with reference to HIV seroconversion: (i) more than 2 years prior, (ii) less than 2 years prior, (iii) less than 2 years after, and (iv) more than 2 years after. The HCV quasispecies in these specimens was characterized by generating clones containing 1 kb of cDNA that spanned the E1 gene and the E2 hypervariable region 1 (HVR1), followed by analysis of clonal frequencies (via electrophoretic migration) and nucleotide sequences. We examined 1,320 cDNA clones (33 per time point) and 287 sequences (median of 7 per time point). We observed a trend toward lower d(N)/d(S) after HIV seroconversion in 7 of 10 subjects and lower d(N)/d(S) in those with rapid HIV disease progression. However, the magnitude of these differences was small. These results are consistent with the hypothesis that HIV infection alters the HCV quasispecies, but the number of subjects and observation time may be too low to characterize the full effect.  相似文献   

13.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

14.
Monitoring the evolution of human immunodeficiency virus type 1 (HIV-1) drug resistance requires measuring the frequency of closely related genetic variants making up the complex viral quasispecies found in vivo. In order to resolve both major and minor (>/=2%) protease gene variants differing by one or more nucleotide substitutions, we analyzed PCR products derived from plasma viral quasispecies by using a combination of denaturing gradient gel electrophoresis and DNA heteroduplex tracking assays. Correct population sampling of the high level of genetic diversity present within viral quasispecies could be documented by parallel analysis of duplicate, independently generated PCR products. The composition of genetically complex protease gene quasispecies remained constant over short periods of time in the absence of treatment and while plasma viremia fell >100-fold following the initiation of protease inhibitor ritonavir monotherapy. Within a month of initiating therapy, a strong reduction in the genetic diversity of plasma viral populations at the selected protease locus was associated with rising plasma viremia and the emergence of drug resistance. The high levels of protease genetic diversity seen before treatment reemerged only months later. In one patient, reduction in genetic diversity at the protease gene was observed concomitantly with an increase in diversity at the envelope gene (E. L. Delwart, P. Heng, A. Neumann, and M. Markowitz, J. Virol. 72:2416-2421, 1998), indicating that opposite population genetic changes can take place in different HIV-1 loci. The rapid emergence of drug-resistant HIV-1 was therefore associated with a strong, although only transient, reduction in genetic diversity at the selected locus. The denaturing gradient-heteroduplex tracking assay is a simple method for the separation and quantitation of very closely related, low-frequency, genetic variants within complex viral populations.  相似文献   

15.
The number of nucleotide (nt) substitutions found in the VP1 gene (encoding viral capsid protein) between any two of 16 closely related isolates of foot-and-mouth disease virus (FMDV) has been quantified as a function of the time interval between isolations [Villaverde et al., J. Mol. Biol. 204 (1988) 771-776]. One of them (isolate C-S12) includes some replacements found in isolates that preceded it and other replacements found in later isolates. The study has revealed alternating periods of rapid evolution and of relative genetic stability of VP1. During a defined period of acute disease, the rate of fixation of replacements at the VP1 coding segment was 6 x 10(-3) substitutions per nt per year. Only small differences in the rate of evolution were observed between subsegments within the VP1 gene. The observation of a relatively constant rate of evolution during a disease episode was unexpected. We propose that such constancy may be a consequence of random sampling of mutants from the FMDV quasispecies, followed by their amplification in susceptible hosts (to generate a new quasispecies). Successive sampling and amplification events may result in a steady accumulation of mutations.  相似文献   

16.
Replication of human immunodeficiency virus type 1 (HIV-1) in diverse conditions limiting for viral entry into cells frequently leads to adaptive mutations in the V3 loop of the gp120 envelope glycoprotein. This has suggested that the V3 loop limits the efficiencies of HIV-1 infections, possibly by directly affecting gp120-coreceptor affinities. In contrast, V3 loop mutations that enable HIV-1(JR-CSF) to use the low-affinity mutant coreceptor CCR5(Y14N) are shown here to have negligible effects on the virus-coreceptor affinity but to dramatically accelerate the irreversible conformational conversion of the envelope gp41 subunits from a three-stranded coil into a six-helix bundle. This slow step is blocked irreversibly by the inhibitor T-20. To further evaluate the role of entry rates in controlling infection efficiencies and viral adaptations, we developed methods to quantitatively measure viral entry kinetics. The virions were adsorbed by spinoculation at 4 degrees C onto HeLa-CD4/CCR5 cell clones that either had limiting or saturating concentrations of CCR5. After warming to 37 degrees C, the completion of entry was monitored over time by the resistance of infections to the competitive CCR5 inhibitor TAK-779. Our results suggest that the efficiency of entry of cell-attached infectious HIV-1 is principally controlled by three kinetic processes. The first is a lag phase that is caused in part by the concentration-dependent reversible association of virus with CD4 and CCR5 to form an equilibrium assemblage of complexes. Second, this assembly step lowers but does not eliminate a large activation energy barrier for a rate-limiting, CCR5-dependent conformational change in gp41 that is sensitive to blockage by T-20. The rate of infection therefore depends on the fraction of infectious virions that are sufficiently saturated with CCR5 to undergo this conformational change and on the magnitude of the activation energy barrier. Although only a small fraction of fully assembled viral complexes overcome this barrier per hour, the ensuing steps of entry are rapidly completed within 5 to 10 min. Thus, this barrier limits the overall flow rate at which the attached virions enter cells, but it has no effect on the lag time that precedes this entry flow. Third, a relatively rapid and kinetically dominant process of viral inactivation, which may partly involve endocytosis, competes with infectious viral entry. Our results suggest that the V3 loop of gp120 has a major effect on the rate-limiting coreceptor-dependent conformational change in gp41 and that adaptive viral mutations, including V3 loop mutations, function kinetically by accelerating this inherently slow step in the entry pathway.  相似文献   

17.
We and others have shown that in individual human immunodeficiency virus type 1 (HIV-1) infection, the adaptive evolution of HIV-1 is influenced by host immune competence. In this study, we tested the hypothesis that in addition to selective forces operating within the host, transmission bottlenecks have an impact on HIV-1 intrahost evolution. Therefore, we studied the intrahost evolution of the V3 region of the external glycoprotein gp120 of HIV-1 during the 3- and 5-year periods following seroconversion after parenteral versus sexual (male-to-male) transmission in 41 participants of the Amsterdam prospective cohorts of homosexual men (n = 31) and intravenous drug users (IVDUs; n = 10) who were AIDS free and had comparable numbers of CD4+ cells. We observed that HIV-1 strains in homosexual men accumulated over 5 years more nonsynonymous substitutions within the V3 loop than HIV-1 strains in IVDUs as a result of lower rates of nonsynonymous evolution in both the initial 3-year period from seroconversion and the following 2-year period as well as a larger proportion of nonsynonymous back substitutions in IVDUs. The mean numbers of synonymous substitutions did not differ between the two risk groups. Since HIV-1 strains in IVDUs could be distinguished from the viruses of homosexual men based on several nucleotide substitutions of which the most conserved is a synonymous substitution at the tip of the V3 loop (GGC pattern), we studied whether the founder virus population itself has an impact on the intrahost evolution of HIV-1. The mean number of nonsynonymous substitutions accumulated over 5 years within the V3 loop was lower in 10 IVDUs infected by the HIV-1 strains with the GGC signature than in 4 IVDUs infected by HIV-1 strains lacking this pattern, while the mean numbers of synonymous substitutions were similar in the two groups.  相似文献   

18.
This study examined the relationship between ex vivo human immunodeficiency virus type 1 (HIV-1) fitness and viral genetic diversity during the course of HIV-1 disease. Primary HIV-1 isolates from 10 patients at different time points were competed against control HIV-1 strains in peripheral blood mononuclear cell (PBMC) cultures to determine relative fitness values. Patient HIV-1 isolates sequentially gained fitness during disease at a significant rate that directly correlated with viral load and HIV-1 env C2V3 diversity. A loss in both fitness and viral diversity was observed upon the initiation of antiretroviral therapy. A possible relationship between genotype and phenotype (virus replication efficiency) is supported by the parallel increases in ex vivo fitness and viral diversity during disease, of which the correlation is largely based on specific V3 sequences. Syncytium-inducing, CXCR4-tropic HIV-1 isolates did have higher relative fitness values than non-syncytium-inducing, CCR5-tropic HIV-1 isolates, as determined by dual virus competitions in PBMC, but increases in fitness during disease were not solely powered by a gradual switch in coreceptor usage. These data provide in vivo evidence that increasing HIV-1 replication efficiency may be related to a concomitant increase in HIV-1 diversity, which in turn may be a determining factor in disease progression.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) strains can be separated into genetic subtypes based on phylogenetic analysis of the envelope gene. Once it had been shown that population-wide intrasubtype genetic variation of HIV-1 strains increases in the course of the AIDS epidemic, it remained uncertain whether HIV-1 subtypes are phenotypic entities spreading as distinct virus populations. To examine this, we applied Eigen's concepts of sequence geometry and fitness topography to the analysis of intrasubtype evolution of the gp120 V3 domain of HIV-1 subtypes A, B, C, and D in the course of the global AIDS epidemic. We observed that despite the high evolution rate of HIV-1, the nonsynonymous distances to the subtype consensus of sequences obtained early in the epidemic are similar to those obtained more than 10 years later, in contrast to the synonymous distances, which increased steadily over time. For HIV-1 subtype B, we observed that the evolution rate of the individual sequences is independent of their distance from the subtype B consensus, but for the individual sequences most distant from the consensus evolution away from the consensus is constrained. As a result, individual HIV-1 genomes fluctuate within a sequence space with fixed distance to the subtype consensus. Our findings suggest that the evolution of the V3 domain of HIV-1 subtypes A, B, C, and D is confined to an area in sequence space within a fixed distance to the consensus of a respective subtype. This in turn indicates that each HIV-1 subtype is a distinct viral quasispecies that is well adapted to the present environment, able to maintain its identity in the V3 region over time, and unlikely to merge during progression of the AIDS epidemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号