首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The muscle‐specific UNC‐45b assists in the folding of sarcomeric myosin. Analysis of the zebrafish unc‐45b upstream region revealed that unc‐45b promoter fragments reliably drive GFP expression after germline transmission. The muscle‐specific 503‐bp minimal promoter 503unc was identified to drive gene expression in the zebrafish musculature. In transgenic Tg(?503unc:GFP) zebrafish, GFP fluorescence was detected in the adaxial cells, their slow fiber descendants, and the fast muscle. At later stages, robust GFP fluorescence is eminent in the cardiac, cranial, fin, and trunk muscle, thereby recapitulating the unc‐45b expression pattern. We propose that the 503unc promoter is a small and muscle‐specific promoter that drives robust gene expression throughout the zebrafish musculature, making it a valuable tool for the exploration of zebrafish muscle. genesis 51:443–447. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
    
The UNC-119 proteins, found in all metazoans examined, are highly conserved at both the sequence and functional levels. In the invertebrates Caenorhabditis elegans and Drosophila melanogaster, unc-119 genes are expressed pan-neurally. Loss of function of the unc-119 gene in C. elegans results in a disorganized neural architecture and paralysis. The function of UNC-119 proteins has been conserved throughout evolution, as transgenic expression of the human UNC119 gene in C. elegans unc-119 mutants restores a wild-type phenotype. However, the nature of the conserved molecular function of UNC-119 proteins is poorly understood. Although unc-119 genes are expressed throughout the nervous system of the worm and fly, the analysis of these genes in vertebrates has focused on their function in the photoreceptor cells of the retina. Here we report the characterization of an unc-119 homolog in the zebrafish. The Unc119 protein is expressed in various neural tissues in the developing zebrafish embryo and larva. Morpholino oligonucleotide (MO)-mediated knockdown of Unc119 protein results in a \"curly tail down\" phenotype. Examination of neural patterning demonstrates that these \"curly tail down\" zebrafish experience a constellation of neuronal defects similar to those seen in C. elegans unc-119 mutants: missing or misplaced cell bodies, process defasciculation, axon pathfinding errors, and aberrant axonal branching. These findings suggest that UNC-119 proteins may play an important role in the development and/or function of the vertebrate nervous system.  相似文献   

3.
4.
5.
Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa.  相似文献   

6.
    
Arsenite (As(III)), an effective chemotherapeutic agent for the acute promyelocytic leukemia (APL) and multiple myeloma (MM), might be also a promise for the therapy of other cancers, including the solid tumors. However, the molecular bases of arsenite‐induced cytotoxicity in the tumor cells have not been fully defined. In this study, we have disclosed that arsenite effectively induces the apoptotic response in the HepG2 human hepatoma cells by triggering GADD45α induction and the subsequent activation of JNKs/AP‐1 cell death pathway. However, signaling events relating to GADD45α/JNKs/AP‐1 pathway activation have not been observed in HL7702 human diploid hepatic cells under the same arsenite exposure condition. Our results thus have illustrated the selective pro‐apoptotic role of arsenite in the hepatoma cells by activating GADD45α‐dependent cell death pathway whereas with little effect on the normal hepatic cells. The approaches to up‐regulate GADD45α levels might be helpful in improving the chemotherapeutic action of arsenite on certain solid tumors including hepatoma. J. Cell. Biochem. 109: 1264–1273, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
Aortic arch malformations are common congenital disorders that are frequently of unknown etiology. To gain insight into the factors that guide branchial aortic arch development, we examined the process by which these vessels assemble in wild type zebrafish embryos and in kurzschlusstr12 (kustr12) mutants. In wild type embryos, each branchial aortic arch first appears as an island of angioblasts in the lateral pharyngeal mesoderm, then elaborates by angiogenesis to connect to the lateral dorsal aorta and ventral aorta. In kustr12 mutants, angioblast formation and initial sprouting are normal, but aortic arches 5 and 6 fail to form a lumenized connection to the lateral dorsal aorta. Blood enters these blind-ending vessels from the ventral aorta, distending the arteries and precipitating fusion with an adjacent vein. This arteriovenous malformation (AVM), which shunts nearly all blood directly back to the heart, is not exclusively genetically programmed, as its formation correlates with blood flow and aortic arch enlargement. By positional cloning, we have identified a nonsense mutation in unc45a in kustr12 mutants. Our results are the first to ascribe a role for Unc45a, a putative myosin chaperone, in vertebrate development, and identify a novel mechanism by which an AVM can form.  相似文献   

9.
10.
    
Myogenesis is mainly sustained by a subpopulation of myogenic cells known as satellite cells (SC). In this paper we studied alpha-smooth muscle (alphaSMA) and alpha-sarcomeric muscle (alphaSRA) actin isoform expression in cultures of human satellite cells (HSC) isolated from skeletal muscle biopsies from a 5-day-old newborn, a 34-year-old young adult and a 71-year-old donor. Myogenicity of cultures was assessed using immunocytochemical detection of desmin and myosin heavy chain. Time-course expression of alphaSRA and alphaSMA were studied with both immunocytochemistry and western blotting procedures. Although alphaSMA was never detected in whole skeletal muscle, both alphaSMA and alphaSRA were detected in proliferating and differentiating HSC derived from donors of all examined ages. The expression level experiments showed that alphaSRA was gradually up-regulated during HSC differentiation, but no significant differences were observed between newborn, young, and elderly HSC cultures. Our data demonstrated that HSC, isolated from subjects of different ages, re-expressed alphaSMA, but its levels and expression pattern varied considerably in the newborn with respect to the young adult and elderly donors. These results are discussed in relation to the myogenic differentiation capability of HSC during human muscle senescence.  相似文献   

11.
ABSTRACT

Macroautophagy/autophagy functions as a quality control mechanism by degrading misfolded proteins and damaged organelles and plays an essential role in maintaining neural homeostasis. The phosphoinositide phosphatidylinositol-3-phosphate (PtdIns3P) effector Atg18 is essential for autophagosome formation in yeast. Mammalian cells contain four Atg18 homologs, belonging to two subclasses, WIPI1 (WD repeat domain, phosphoinositide interacting 1), WIPI2 and WDR45B/WIPI3 (WD repeat domain 45B), WDR45/WIPI4. The role of Wdr45b in autophagy and in neural homeostasis, however, remains unknown. Recent human genetic studies have revealed a potential causative role of WDR45B in intellectual disability. Here we demonstrated that mice deficient in Wdr45b exhibit motor deficits and learning and memory defects. Histological analysis reveals that wdr45b knockout (KO) mice exhibit a large number of swollen axons and show cerebellar atrophy. SQSTM1- and ubiquitin-positive aggregates, which are autophagy substrates, accumulate in various brain regions in wdr45b KO mice. Double KO mice, wdr45b and wdr45, die within one day after birth and exhibit more severe autophagy defects than either of the single KO mice, suggesting that these two genes act cooperatively in autophagy. Our studies demonstrated that WDR45B is critical for neural homeostasis in mice. The wdr45b KO mice provide a model to study the pathogenesis of intellectual disability.

Abbreviations: ACSF: artificial cerebrospinal fluid; AMC: aminomethylcoumarin; BPAN: beta-propeller protein-associated neurodegeneration; CALB1: calbindin 1; CNS: central nervous system; DCN: deep cerebellar nuclei; fEPSP: field excitatory postsynaptic potential; IC: internal capsule; ID: intellectual disability; ISH: in situ hybridization; KO: knockout; LTP: long-term potentiation; MBP: myelin basic protein; MGP: medial globus pallidus; PtdIns3P: phosphoinositide phosphatidylinositol-3-phosphate; WDR45B: WD repeat domain 45B; WIPI1: WD repeat domain, phosphoinositide interacting 1; WT: wild type.  相似文献   

12.
13.
  总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
    
Gadd45alpha is shown to be induced by a wide spectrum of DNA-damaging agents and implicated in negative regulation of cell growth by causing G2-M arrest or induction of apoptosis. In the present study, we explored the involvement of p53 in the promoter activation of Gadd45alpha as well as the role of Gadd45alpha in carboplatin (Carb) or 5-fluorouracil (5-FU)-induced apoptosis in human papillomavirus virus (HPV)-positive HEp-2 and HeLa cells. We report that Carb or 5-FU upregulate Gadd45alpha and p53 in both these cells. Transient transfection of chloramphenicol acetyl transferase (CAT)-reporter construct driven by Gadd45alpha promoter clearly indicated that Gadd45alpha upregulation was mediated through activation of its promoter. Inhibition of p53 function by dominant-negative-p53 expression partially suppressed the activation of Gadd45alpha promoter. Further, the induction of apoptosis was assessed by detection of poly (ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. Inhibition of upregulated Gadd45alpha expression by antisense expression vector did not modulate the Carb or 5-FU-induced apoptosis. Overall, we conclude that Gadd45alpha promoter activation partially depends on p53 function in HPV-positive cells. Moreover, Gadd45alpha protein does not modulate Carb or 5-FU-induced apoptosis in these cells.  相似文献   

16.
    
Nicotinic acetylcholine receptors (nAChRs) are highly expressed at the vertebrate neuromuscular junction (NMJ) where they are required for muscle activation. Understanding the factors that underlie NMJ development is critical for a full understanding of muscle function. In this study we performed whole cell and outside‐out patch clamp recordings, and single‐cell RT‐qPCR from zebrafish red and white muscle to examine the properties of nAChRs during the first 5 days of development. In red fibers miniature endplate currents (mEPCs) exhibit single exponential time courses at 1.5 days postfertilization (dpf) and double exponential time courses from 2 dpf onwards. In white fibers, mEPCs decay relatively slowly, with a single exponential component at 1.5 dpf. By 2 and 3 dpf, mEPC kinetics speed up, and decay with a double exponential component, and by 4 dpf the exponential decay reverts back to a single component. Single channel recordings confirm the presence of two main conductance classes of nAChRs (~45 pS and ~65 pS) in red fibers with multiple time courses. Two main conductance classes are also present in white fibers (~55 pS and ~73 pS), but they exhibit shorter mean open times by 5 dpf compared with red muscle. RT‐qPCR of mRNA for nicotinic receptor subunits supports a switch from γ to ε subunits in white fibers but not in red. Our findings provide a developmental profile of mEPC properties from red and white fibers in embryonic and larval zebrafish, and reveal previously unknown differences between the NMJs of these muscle fibers.© 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 916–936, 2016  相似文献   

17.
Age-related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high- and low-functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low-functioning elderly (LFE) participants when compared to young and high-functioning elderly participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in cytochrome c oxidase activity. Levels of key metabolic regulators, SIRT3 and PGC-1α, were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects; however, no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.  相似文献   

18.
    
Sepsis‐associated encephalopathy (SAE) has typically been associated with a poor prognosis. Although sestrin 2 (SESN2) plays a crucial role in metabolic regulation and the stress response, its expression and functional roles in SAE are still unclear. In the present study, SAE was established in mice through caecal ligation and puncture (CLP). The adeno‐associated virus 2 (AAV2)‐mediated SESN2 expression (ie overexpression and knockdown) system was injected into the hippocampi of mice with SAE, and subsequently followed by electron microscopic analysis, the Morris water maze task and pathological examination. Our results demonstrated an increase of SESN2 in the hippocampal neurons of mice with SAE, 2‐16 hours following CLP. AAV2‐mediated ectopic expression of SESN2 attenuated brain damage and loss of learning and memory functions in mice with SAE, and these effects were associated with lower pro‐inflammatory cytokines in the hippocampus. Mechanistically, SESN2 promoted unc‐51‐like kinase 1 (ULK1)‐dependent autophagy in hippocampal neurons through the activation of the AMPK/mTOR signalling pathway. Finally, AMPK inhibition by SBI‐0206965 blocked SESN2‐mediated attenuation of SAE in mice. In conclusion, our findings demonstrated that SESN2 might be a novel pharmacological intervention strategy for SAE treatment through promotion of ULK1‐dependent autophagy in hippocampal neurons.  相似文献   

19.
Apoptosis plays an essential role in ischemic stroke pathogenesis. Research on the process of neuronal apoptosis in models of ischemic brain injury seems promising. The role of growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in brain ischemia has not been fully examined to date. This study aims to investigate the function of Gadd45b in ischemia-induced apoptosis. Adult male Sprague-Dawley rats were subjected to brain ischemia by middle cerebral artery occlusion (MCAO). RNA interference (RNAi) system, which is mediated by a lentiviral vector (LV), was stereotaxically injected into the ipsilateral lateral ventricle to knockdown Gadd45b expression. Neurologic scores and infarct volumes were assessed 24 h after reperfusion. Apoptosis-related molecules were studied using immunohistochemistry and Western blot analysis. We found that Gadd45b-RNAi significantly increased infarct volumes and worsened the outcome of transient focal cerebral ischemia. Gadd45b-RNAi also significantly increased neuronal apoptosis as indicated by increased levels of Bax and active caspase-3, and decreased levels of Bcl-2. These results indicate that Gadd45b is a beneficial mediator of neuronal apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号