首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.

Background

Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.

Results

To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.

Conclusions

The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.
  相似文献   

2.

Background

The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.

Methods

The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).

Results

Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.

Conclusions

Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.
  相似文献   

3.

Introduction

Media sensationalism on the H1N1 outbreak may have influenced decisional processes and clinical diagnosis.

Case Presentation

We report two cases of patients who presented in 2009 with coexisting H1N1 virus and Legionella infections: a 69-year-old Caucasian man and a 71-year-old Caucasian woman. In our cases all the signs and symptoms, including vomiting, progressive respiratory disease leading to respiratory failure, refractory hypoxemia, leukopenia, lymphopenia, thrombocytopenia, and elevated levels of creatine kinase and hepatic aminotransferases, were consistent with critical illness due to 2009 H1N1 virus infection. Other infectious disorders may mimic H1N1 viral infection especially Legionnaires' disease. Because the swine flu H1N1 pandemic occurred in Autumn in Italy, Legionnaires disease was to be highly suspected since the peak incidence usually occurs in early fall. We do think that our immediate suspicion of Legionella infection based on clinical history and X-ray abnormalities was fundamental for a successful resolution.

Conclusion

Our two case reports suggest that patients with H1N1 should be screened for Legionella, which is not currently common practice. This is particularly important since the signs and symptoms of both infections are similar.
  相似文献   

4.

Objectives

To evaluate MDCK and MDCK-SIAT1 cell lines for their ability to produce the yield of influenza virus in different Multiplicities of Infection.

Results

Yields obtained for influenza virus H1N1 grown in MDCK-SIAT1 cell was almost the same as MDCK; however, H3N2 virus grown in MDCK-SIAT1 had lower viral titers in comparison with MDCK cells. The optimized MOIs to infect the cells on plates and microcarrier were selected 0.01 and 0.1 for H1N1 and 0.001 and 0.01 for H3N2, respectively.

Conclusions

MDCK-SIAT1 cells may be considered as an alternative mean to manufacture cell-based flu vaccine, especially for the human strains (H1N1), due to its antigenic stability and high titer of influenza virus production.
  相似文献   

5.

Background

Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature of this method. However, enzyme-linked immunosorbent assays (ELISAs) are being explored as an alternative test method.H5 and H7 specific monoclonal antibodies were experimentally raised and used in the development of inhibition ELISAs for detection of serological response specifically directed against AIV subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3.

Results

Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier during experimental infection than the HI test did. The reproducibility of the ELISA’s performed at different times was high with Pearson correlation coefficients of 0.96-0.98.

Conclusions

The ELISAs are a potential alternative to the HI test for screening of large amounts of avian sera, although only experimental sera were tested in this study.
  相似文献   

6.

Background

In this report the phytochemical profile of Nitraria. Retusa (N. Retusa) leaf extracts were identified and their ability to induce apoptosis in human chronic myelogenous erythroleukaemia (K562) was evaluated.

Methods

Apoptosis of the human chronic myelogenous erythroleukaemia (K562) was evidenced by investigating DNA fragmentation, PARP cleavage and caspases 3 and 8 inducing activities, in the presence of N. retusa extracts.

Results

Our study revealed that the tested extracts from N. Retusa contain many useful bioactive compounds. They induced in a time-dependent manner the apoptosis the tested cancerous our cell line. This result was confirmed by ladder DNA fragmentation profile and PARP cleavage, as well as a release in caspase-3 and caspase-8 level.

Conclusion

Our results indicate that the tested compounds have a significant antiproliferative effect which may be due to their involvement in the induction of the extrinsic apoptosic pathway.
  相似文献   

7.

Objectives

The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed.

Results

We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months.

Conclusions

The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.
  相似文献   

8.
9.

Background

The discovery of molecular markers associated with various breast cancer subtypes has greatly improved the treatment and outcome of breast cancer patients. Unfortunately, breast cancer cells acquire resistance to various therapies. Mounting evidence suggests that resistance is rooted in the deregulation of the G1 phase regulatory machinery.

Methods

To address whether deregulation of the G1 phase regulatory machinery contributes to radiotherapy resistance, the MCF10A immortalized human mammary epithelial cell line, ER-PR-Her2+ and ER-PR-Her2- breast cancer cell lines were irradiated. Colony formation assays measured radioresistance, while immunocytochemistry, Western blots, and flow cytometry measured the cell cycle, DNA replication, mitosis, apoptosis, and DNA breaks.

Results

Molecular markers common to all cell lines were overexpressed, including cyclin A1 and cyclin D1, which impinge on CDK2 and CDK4 activities, respectively. We addressed their potential role in radioresistance by generating cell lines stably expressing small hairpin RNAs (shRNA) against CDK2 and CDK4. None of the cell lines knocked down for CDK2 displayed radiosensitization. In contrast, all cell lines knocked down for CDK4 were significantly radiosensitized, and a CDK4/CDK6 inhibitor sensitized MDA-MB-468 to radiation induced apoptosis. Our data showed that silencing CDK4 significantly increases radiation induced cell apoptosis in cell lines without significantly altering cell cycle progression, or DNA repair after irradiation. Our results indicate lower levels of phospho-Bad at ser136 upon CDK4 silencing and ionizing radiation, which has been shown to signal apoptosis.

Conclusion

Based on our data we conclude that knockdown of CDK4 activity sensitizes breast cancer cells to radiation by activating apoptosis pathways.
  相似文献   

10.

Background

MicroRNAs play important roles in regulation of the cardiovascular system. The purpose of this study was to investigate microRNA-320 (miR-320) expression in myocardial ischemia-reperfusion (I/R) injury and the roles of miR-320 in cardiomyocyte apoptosis by targeting AKIP1 (A kinase interacting protein 1).

Methods

The level of miR-320 was detected using quantitative real-time polymerase chain reaction (qRT-PCR), and cardiomyocyte apoptosis was detected via terminal dUTP nick end-labeling assay. Cardiomyocyte apoptosis and the mitochondrial membrane potential were evaluated via flow cytometry. Bioinformatics tools were used to identify the target gene of miR-320. The expression levels of AKIP1 mRNA and protein were detected via qRT-PCR and Western blot, respectively.

Results

Both the level of miR-320 and the rate of cardiomyocyte apoptosis were substantially higher in the I/R group and H9c2 cells subjected to H/R than in the corresponding controls. Overexpression of miR-320 significantly promoted cardiomyocyte apoptosis and increased the loss of the mitochondrial membrane potential, whereas downregulation of miR-320 had an opposite effect. Luciferase reporter assay showed that miR-320 directly targets AKIP1. Moreover, knock down and overexpression of AKIP1 had similar effects on the H9c2 cells subjected to H/R.

Conclusions

miR-320 plays an important role in regulating cardiomyocyte apoptosis induced by I/R injury by targeting AKIP1 and inducing the mitochondrial apoptotic pathway.
  相似文献   

11.
Zhou  Xinrui  Yin  Rui  Kwoh  Chee-Keong  Zheng  Jie 《BMC genomics》2018,19(10):936-154

Background

The evolution of influenza A viruses leads to the antigenic changes. Serological diagnosis of the antigenicity is usually labor-intensive, time-consuming and not suitable for early-stage detection. Computational prediction of the antigenic relationship between emerging and old strains of influenza viruses using viral sequences can facilitate large-scale antigenic characterization, especially for those viruses requiring high biosafety facilities, such as H5 and H7 influenza A viruses. However, most computational models require carefully designed subtype-specific features, thereby being restricted to only one subtype.

Methods

In this paper, we propose a Context-FreeEncoding Scheme (CFreeEnS) for pairs of protein sequences, which encodes a protein sequence dataset into a numeric matrix and then feeds the matrix into a downstream machine learning model. CFreeEnS is not only free from subtype-specific selected features but also able to improve the accuracy of predicting the antigenicity of influenza. Since CFreeEnS is subtype-free, it is applicable to predicting the antigenicity of diverse influenza subtypes, hopefully saving the biologists from conducting serological assays for highly pathogenic strains.

Results

The accuracy of prediction on each subtype tested (A/H1N1, A/H3N2, A/H5N1, A/H9N2) is over 85%, and can be as high as 91.5%. This outperforms existing methods that use carefully designed subtype-specific features. Furthermore, we tested the CFreeEnS on the combined dataset of the four subtypes. The accuracy reaches 84.6%, much higher than the best performance 75.1% reported by other subtype-free models, i.e. regional band-based model and residue-based model, for predicting the antigenicity of influenza. Also, we investigate the performance of CFreeEnS when the model is trained and tested on different subtypes (i.e. transfer learning). The prediction accuracy using CFreeEnS is 84.3% when the model is trained on the A/H1N1 dataset and tested on the A/H5N1, better than the 75.2% using a regional band-based model.

Conclusions

The CFreeEnS not only improves the prediction of antigenicity on datasets with only one subtype but also outperforms existing methods when tested on a combined dataset with four subtypes of influenza viruses.
  相似文献   

12.

Background

The large and constantly evolving HIV-1 pandemic has led to an increasingly complex diversity. Because of some taxonomic difficulties among the most diverse HIV-1 subtypes, and taking advantage of the large amount of sequence data generated in the recent years, we investigated novel lineage patterns among the main HIV-1 subtypes.

Results

All HIV full-length genomes available in public databases were analysed (n?=?2017). Maximum likelihood phylogenies and pairwise genetic distance were obtained. Clustering patterns and mean distributions of genetic distances were compared within and across the current groups, subtypes and sub-subtypes of HIV-1 to detect and analyse any divergent lineages within previously defined HIV lineages. The level of genetic similarity observed between most HIV clades was deeply consistent with the current classification. However, both subtypes A and D showed evidence of further intra-subtype diversification not fully described by the nomenclature system at the time and could be divided into several distinct sub-subtypes.

Conclusions

With this work, we propose an updated nomenclature of sub-types A and D better reflecting their current genetic diversity and evolutionary patterns. Allowing a more accurate nomenclature and classification system is a necessary step for easier subtyping of HIV strains and a better detection or follow-up of viral epidemiology shifts.
  相似文献   

13.

Background

Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATLL), a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells.

Methods

Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential.

Results

Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor) induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145.

Conclusions

WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.
  相似文献   

14.

Objective

An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus.

Results

Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group.

Conclusion

Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.
  相似文献   

15.

Background

Cerebral infarction caused by different reasons seems differ in fibrinogen levels, so the current work intends to explore the relationship between the fibrinogen level and subtypes of the TOAST criteria in the acute stage of ischemic stroke.

Methods

A total of 577 case research objects were treated acute ischemic stroke patients in our hospital from December 2008 to December 2010, and blood samples within 72 hours of the onset were processed with the fibrinogen (PT-der) measurement. Classification of selected patients according to the TOAST Criteria was conducted to study the distribution of fibrinogen levels in the stroke subtypes.

Results

The distribution of fibrinogen levels in the subtypes was observed to be statistically insignificant.

Conclusions

In the acute stage of ischemic stroke, fibrinogen level was not related to the subtypes of the TOAST criteria.
  相似文献   

16.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

17.

Background

An influenza H3N2 epidemic occurred throughout Southern China in 2012.

Methods

We analyzed the hemagglutinin (HA) and neuraminidase (NA) genes of influenza H3N2 strains isolated between 2011–2012 from Guangdong. Mutation sites, evolutionary selection, antigenic sites, and N-glycosylation within these strains were analyzed.

Results

The 2011–2012 Guangdong strains contained the HA-A214S, HA-V239I, HA-N328S, NA-L81P, and NA-D93G mutations, similar to those seen in the A/ Perth/16/2009 influenza strain. The HA-NSS061–063 and NNS160–162 glycosylation sites were prevalent among the 2011–2012 Guangdong strains but the NA-NRS402–404 site was deleted. Antigenically, there was a four-fold difference between A/Perth/16/2009 -like strains and the 2011–2012 Guangdong strains.

Conclusion

Antigenic drift of the H3N2 subtype contributed to the occurrence of the Southern China influenza epidemic of 2012.
  相似文献   

18.

Background

Nitrous oxide (N2O), a long-standing anesthetic, is also neurotoxic by interfering with the bioavailability of vitamin B12 if abused. A few case studies have reported the neurological and psychiatric complications of N2O.

Case presentation

Here, we reported a patient of N2O induced subacute combined degeneration (SCD) with longitudinally extensive myelopathy with inverted V-sign exhibiting progressive limb paresthesia and unsteady gait.

Conclusions

This case raises the awareness of an important mechanism of neural toxicity of N2O, and clinical physicians should be well recognized this in the field of substance-related disorders.
  相似文献   

19.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

20.

Background and aims

The cardiovascular health benefits of eicosapentaenoic acid (EPA) have been demonstrated previously; however, the exact mechanism underlying them remains unclear. Our previous study found that lipotoxicity induced cardiomyocyte apoptosis via the inhibition of autophagy. Accordingly, in this study, we investigated whether EPA attenuated lipotoxicity-induced cardiomyocyte apoptosis through autophagy regulation. The role of EPA in mitochondrial dynamics was analyzed as well.

Methods

To explore how EPA protected against lipotoxicity-induced myocardial injury, cardiomyoblast (H9C2) cells were left untreated or were treated with 400 μM palmitic acid (PAM) and/or 80 μM EPA for 24 h.

Results

Excessive PAM treatment induced apoptosis. EPA reduced this PAM-induced apoptosis; however, EPA was unable to ameliorate the effects of PAM when autophagy was blocked by 3-methyladenine and bafilomycin A1. PAM blocked the autophagic flux, thus causing the accumulation of autophagosomes and acid vacuoles, whereas EPA restored the autophagic flux. PAM caused a decrease in polyunsaturated fatty acid (PUFA) content and an increase in saturated fatty acid content in the mitochondrial membrane, while EPA was incorporated in the mitochondrial membrane and caused a significant increase in the PUFA content. PAM also decreased the mitochondrial membrane potential, whereas EPA enhanced it. Finally, PAM elevated the expressions of autophagy-related proteins (LC3I, LC3II, p62) and mitochondrial fission protein (Drp1), whereas EPA inhibited their elevation under PAM treatment.

Conclusions

EPA reduces lipotoxicity-induced cardiomyoblast apoptosis through its effects on autophagy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号