首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. Two mutants of the sodium channel II have been expressed inXenopus oocytes and have been investigated using the patch-clamp technique. In mutant E387Q the glutamic acid at position 387 has been replaced by glutamine, and in mutant D384N the aspartic acid at position 384 has been replaced by asparagine.2. Mutant E387Q, previously shown to be resistant to block by tetrodotoxin (Noda et al. 1989), has a single-channel conductance of 4 pS, that can be easily measured only using noise analysis. At variance with the wild-type, the openchannel current-voltage relationship of mutant E387Q is linear over a wide voltage range even under asymmetrical ionic conditions.3. Mutant D384N has a very low permeability for any of the following ions: Cl, Na+, K+, Li+, Rb+, Ca2+, Mg2+, NH4 + , TMA+, TEA+. However, asymmetric charge movements similar to the gating currents of the Na+-selective wild-type are still observed.4. These results suggest that residues E387 and D384 interact directly with the pathway of the ions permeating the open channel.Abbreviations TTX tetrodotoxin; Na+, sodium; K+, potassium; - NFR normal frog Ringer - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis(-amino-ethyl ether) N,N,N',N'-tetra acetic acid - TEA tetraethylammonium - TMA tetramethylammonium;I g , gating current; , single-channel conductance  相似文献   

2.
The respiratory chain of a marine bacterium,Vibrio alginolyticus, required Na+ for maximum activity, and the site of Na+-dependent activation was localized on the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase extruded Na+ as a direct result of redox reaction. It was composed of three subunits, , , and , with apparentMr of 52, 46, and 32 KDa, respectively. The reduction of ubiquinone-1 to ubiquinol proceeded via ubisemiquinone radicals. The former reaction was catalyzed by the FAD-containing subunit. This reaction showed no specific requirement for Na+. For the formation of ubiquinol, the presence of the subunit and the FMN-containing subunit was essential. The latter reaction specifically required Na+ for activity and was strongly inhibited by 2-n-heptyl-4-hydroxyquinolineN-oxide. It was assigned to the coupling site for Na+ transport. The mode of energy coupling of redox-driven Na+ pump was compared with those of decarboxylase- and ATP-driven Na+ pumps found in other bacteria.  相似文献   

3.
Summary The activity of ALA-dehydratase from corn seedlings is affected by Mn++, Fe++, Pb++, Cu++, Zn++ and Sn+4 ions, in vivo Mn++ and Fe++ are ativators while Pb++ and Sn+4 are inhibitors; in vitro Cu++ and Zn++ are inhibitors. The kinetic parameters (Vmax and KM) support the hypothesis that Mn, Fe, Sn and Pb ions act on the biosynthesis of the enzyme and Zn and Cu ions on the enzyme-substrate affinity. Some related metal-organic compounds interrere in vivo on the ALA-dehydratase activity modifying the kinetic parameters, therefore the enzyme biogenesis and/or enzyme-sustrat affinity are affected.  相似文献   

4.
Summary The chemical activities, (a), of Na+ and K+ were determined in large mature and in small immature frog oocytes, using open-tipped micropipettes and ionselective microelectrodes. The average chemical concentrations,c, of Na+ and K+ were determined by spectrophotometry and by electron probe X-ray microanalysis. The apparent activity coefficient (app) was calculated for each ion as the ratio,a/c.With development, (a Na/a K) decreased four to fivefold and (c Na/c K) increased six to sevenfold. In the large mature oocytes, Na app was measured to be 0.08±0.02 and K app lay within the range 1.15±0.03 to 1.29±0.04, constituting the smallest value for Na+ and largest value for K+, respectively, thus far reported. This intracellular value of K app was substantially greater than the activity coefficient of K+ in the external medium (0.76). The data suggest that the inequality of Na app and K app in this and probably other cells reflects the development of subcellular compartmentalization of ions. Possible intracellular sites of ionic compartmentalization are considered.  相似文献   

5.
This study aimed to disclose the acid tolerance mechanism of Lactobacillus plantarum by comparing L. plantarum ZDY 2013 with the type strain L. plantarum ATCC 8014 in terms of cell membrane, energy metabolism, and amino acid metabolism. L. plantarum ZDY 2013 had a superior growth performance under acidic condition with 100-fold higher survival rate than that of L. plantarum ATCC 8014 at pH 2.5. To determine the acid tolerance physiological mechanism, cell integrity was investigated through scanning electron microscopy. The study revealed that L. plantarum ZDY 2013 maintained cell morphology and integrity, which is much better than L. plantarum ATCC 8014 under acid stress. Analysis of energy metabolism showed that, at pH 5.0, L. plantarum ZDY 2013 enhanced the activity of Na+/K+-ATPase and decreased the ratio of NAD+/NADH in comparison with L. plantarum ATCC 8014. Similarly, amino acid metabolism of intracellular arginine, glutamate, and alanine was improved in L. plantarum ZDY 2013. Correspondingly, the activity of arginine deiminase and glutamate decarboxylase of L. plantarum ZDY 2013 increased by 1.2-fold and 1.3-fold compared with L. plantarum ATCC 8014 in acid stress. In summary, it is demonstrated that the special physiological behaviors (integrity of cell membrane, enhanced energy metabolism, increased amino acid and enzyme level) of L. plantarum ZDY 2013 can protect the cells from acid stress.  相似文献   

6.
Summary The uptake and binding of the lipophilic cations ethidium+, tetraphenylphosphonium+ (TPP+), triphenylmethylphosphonium+ (TPMP+), and tetraphenylarsonium+ (TPA+) in rat liver mitochondria and submitochondrial particles were investigated. The effects of membrane potential, surface potentials and cation concentration on the uptake and binding were elucidated. The accumulation of these cations by mitochondria is described by an uptake and binding to the matrix face of the inner membrane in addition to the binding to the cytosolic face of the inner membrane. The apparent partition coefficients between the external medium and the cytosolic surface of the inner membrane (K' o) and the internal matrix volume and matrix face of the inner membrane (K' i) were determined and were utilized to estimate the membrane potential from the cation accumulation factorR c according to the relation =RT/ZF ln [(R cVo–K'o)/(Vi+K'i)] whereV o andV i are the volume of the external medium and the mitochondrial matrix, respectively, andR c is the ratio of the cation content of the mitochondria and the medium. The values of estimated from this equation are in remarkably good agreement with those estimated from the distribution of86Rb in the presence of valinomycin. The results are discussed in relation to studies in which the membrane potential in mitochondria and bacterial cells was estimated from the distribution of lipophilic cations.  相似文献   

7.
Summary The loop diuretic bumetanide binds specifically to the Na/K/2Cl cotransporter of many cell types including duck erythrocytes. Membranes isolated from these erythrocytes retain the ability to bind bumetanide when cells are exposed to cotransport activity stimuli prior to membrane isolation. An extensive study of the effects of ions on specific [3H]bumetanide binding to such membranes is presented here and compared to the activity of these ions in supporting transport function in intact cells. Both Na+ and K+ enhanced bumetanide binding in a saturable manner consistent with a single-site interaction. The K m for each ion was dependent on the concentration of the other cation suggesting heterotropic cooperative interactions between the Na+ and K+ binding sites. Na+ and K+ were partially replaceable, with the selectivity of the Na+ site being Na+ > Li+ > NH 4 + ; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ also supported a small amount of specific binding when substituted for Na+. The selectivity of the K+ site was K+ Rb+ > NH 4 + > Cs+; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ were inactive at this site. The results of transport experiments revealed a slightly different pattern. Li+ could partially substitute for Na+ in supporting coteansport, but other monovalent cations were completely inactive. The order of potency at the K+ site was NH 4 + > K+ Rb+ > Cs+ other monovalent cations. The effect of Cl- on bumetanide binding was biphasic, being stimulatory at low [Cl-] but inhibitory at high [Cl-]. As this implies the existence of two Cl- binding sites (termed Cl H and Cl L for the high- and low- affinity sites, respectively) each phase was examined individually. Cl- binding to Cl H could be described by a rectangular hyperbola with a K m of 2.5 mm, while kinetic analysis of the inhibition of bumetanide binding at high [Cl-] revealed that it was of a noncompetitive type (K i = 112.9 mm). The selectivity of anion binding to the two sites was distinct. Cl H was highly selective with Cl- > SCN- > Br-; F-, NO 3 - , ClO 4 - , MeSO 4 - , gluconate- and SO 4 2- were inactive. The efficacy of anion inhibition of binding to Cl L was ClO 4 - > I- > SCN- > NO3 > Cl-; F-, MeSO 4 - , gluconate-, and SO 4 2- were inactive. Thus, Cl H is much more selective than Cl L and largely accounts for the specificity of the system with respect to anion transport. SO 4 - , NO 3 - , I-, SCN- and ClO 4 - did not support cotransport when bound to Cl L and the latter three anions were inhibitory. Mg2+ was found to stimulate binding at a narrowly defined peak around 1.5 mm, but was inhibitory at higher concentrations. Other divalent cations caused a similar inhibition of bumetanide binding but did not exert a stimulatory effect at 1.5 mm. Divalent cations have little effect on cotransport in intact cells at concentrations up to 20 mm, suggesting that their effects on diuretic binding reflect interactions at internally disposed sites. Bumetanide binding was optimal at a pH of 7.8–8.1 and declined sharply as the pH was lowered towards 6. The titration curve correlated well with the effect of pH on cotransport in intact cells; the inhibitory effect of low pH suggests that protonation of the cotransporter may inhibit its function.We thank Drs. Brad Pewitt, John Westley and Mrinalini Rao for discussion, Sara Leung and Artelia Watson for their excellent technical assistance, and Dr. R.J. Turner for his gift of [3H] bumetanide. This work was supported in part by Cystic Fibrosis Center grant #CF RO11 7-04.  相似文献   

8.
Using the patch-clamp technique in combination with sliced tissue preparation the membrane properties of newborn rabbit area postrema neurons were investigated. The neurons responded upon depolarization with a fast Na +-current followed by an inactivating and non-inactivating K +-current. GABA-activated currents were investigated resulting in a large Cl--conductance, indicating the expression of GABAA-receptors. The expression of glutamate receptor mRNA was studied by in situ hybridization and electrophysiological measurements of these receptors by means of the patch-clamp technique. As a main result it was found that ionotropic glutamate receptors in the area postrema are composed of flop variants of the GluA-, GluB- and GluC-subunits.Abbreviations AP area postrema - GABA -aminobutyric acid - Glu glutamate - I–V current-voltage - SFO subfornical organ  相似文献   

9.
Summary The pH decrease in a phosphate buffer due to fermentation of glucose to lactic acid by non-growing Lactobacillus plantarum cells has been studied. The method used offers a quick and reproducible way of measuring the glucose-fermenting activity of L. plantarum. The maximum observed velocity of pH decrease is linear with the biomass concentration and is defined as the activity of the cell suspension. With L. plantarum, recalculation of this arbitrary unit (pH·min–1 per gram dry weight) to a conceivable unit of lactic acid production rate (mol·min–1 per gram dry weight) is possible. This recalculation is based on the titration theory of a weak base with a weak acid. The same theory together with the lactic acid production kinetics of L. plantarum is applied to model the entire pH-time curve.Offprint requests to: L. C. Lievense  相似文献   

10.
We investigated the effect of external cations on the permeability characteristics and gating kinetics of the human ether-à-go-go-related gene (HERG) current using the whole-cell patch-clamp technique. Inward HERG currents were recorded on hyperpolarization in 140 mM external Cs+ and Rb+, as well as K+. The permeability ratios of Rb+ and Cs+ relative to K+ were 1.25 and 0.56, respectively. Biphasic outward currents were recorded on depolarization in 140 mM Cs+ and in Rb+ with much smaller amplitude. The voltage dependence of inactivation was affected by external cations, such that the half-inactivation voltage shifted from –69.4±3.7 mV in K+ to –30.7±1.6 mV in Cs+ and to –35.8±1.9 mV in Rb+ (n=5). The time constants of inactivation were also changed significantly by external cations; of inactivation at +40 mV was 16.4±2.2 ms in 140 mM K+, 181±20.3 ms in Cs+, and 94.1±7.6 ms in Rb+ (n=5). Voltage dependence of activation was not altered significantly. The inhibition of the rapid inactivation mechanism by large cations may suggest that the foot-in-the-door model of gating is involved in HERG channel inactivation.  相似文献   

11.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

12.
Summary We have studied the influence of the K+-current mutations eag and Sh and the Na+-current mutation nap ts upon two well-defined neural circuits that underlie flight and an escape response in Drosophila, recording from dorsal longitudinal and tergotrochanteral muscles. Mutations of Sh and eag affected refractory period and following frequency, but not latency, of the jump-and-flight escape response. The nap ts mutation altered these 3 physiological parameters of the jump (TTM), but not the flight (DLM), branch, suggesting differences in the vulnerability of different circuit components to the mutation. In contrast to their interaction in some other systems, nap ts did not counteract the effects of eag and Sh upon these physiological parameters in eag Sh; nap triple mutants.In eag Sh double mutants, in which multiple K+ currents may be diminished, flight muscles showed abnormal rhythmic activity not associated with flight, and some flies also had an abnormal wings-down posture. The low-frequency spikes probably originated in the flight muscle motoneurons, but the coordination between muscle fibers during this non-flight activity was distinct from flight. Nevertheless, in spite of the presence of this non-flight activity in resting eag Sh flies, those animals with normal wing posture were also able to fly, with a normal pattern of muscle activity. This suggests that in these mutants, the DLM motoneuron circuit is able to switch between two patterns of output, non-flight activity and flight. In eag Sh; nap triple mutants, the non-flight activity and abnormal wing posture were absent, indicating that a reduction of Na+ current counteracts the hyperexcitable influence of the K+-current mutations in this circuit.Abbreviations CGF cervical giant fiber - DLM dorsal longitudinal muscle - eag ether à go-go - FF 50 following frequency with 50% response - nap ts no action potential — temperature sensitive para paralytic - PSI peripherally synapsing interneuron - Sh Shaker TTM tergotrochanteral muscle  相似文献   

13.
Summary The mutation am6 in the cI gene of bacteriophage is identified as a CT transition in a 5CC T A GG sequence. In four-factor crosses of am6 with nearby mutations in cI, the frequencies of cI+ recombinants are much higher than expected from the physical distances. A very short patch (VSP) mismatch repair system is presumed to recognize am6/am + mispairs in the heteroduplexes that accompany recombination between the outside markers. Mutation am6 is corrected to am +; correction of am + to am6 was not detected. Clear-plaque mutation 1-1 in cI is a TC transition in a 5CTTGG sequence, resulting in the sequence 5CC T A GG. When 1-1 was crossed with nearby mutations in gene cI, there were no excess cI+ recombinants, which would result from repair of CCTGG (1-1) to CTTGG (cI+). However, in crosses of cI+ phages with mutation 1-1, there was an excess of cI- recombinants, indicating that cI+ was repaired to 1-1. Preferential repair does not require adenine or cytosine methylation: when repairing a mismatch, the VSP repair system apparently identifies specific mispaired bases by sequence alone.  相似文献   

14.
Summary A highly enriched preparation of basolateral membrane vesicles was isolated from rabbit distal colon surface epithelial cells employing the method described by Wiener, Turnheim and van Os (Weiner, H., Turnheim, K., van Os, C.H. (1989)J. Membrane Biol.110:147–162) and incorporated into planar lipid bilayers. With very few exceptions, the channel activity observed was that of a high conductance, Ca2+-activated K+ channel. This channel is highly selective for K+ over Na+ and Cl, displays voltage-gating similar to maxi K(Ca) channels found in other cell membranes, and kinetic analyses are consistent with the notion that K+ diffusion through the channel involves either the binding of a single K+ ion to a site within the channel or single-filling (multi-ion occupancy). Channel activity is inhibited by the venom from the scorpionLeiurus quinquestriatus, Ba2+, quinine, and trifluoperazine. The possible role of this channel in the function of these cells is discussed.  相似文献   

15.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   

16.
Summary The electrically excitable salivary cells of the giant Amazon leech, Haementeria, display a time-dependent inward rectification. Under voltage clamp, hyperpolarizing steps to membrane potentials negative to about –70 mV were associated with the activation of a slow inward current (I h) which showed no inactivation with time. The time course of activation of I hwas described by a single-exponential function and was strongly voltage dependent. The activation curve ofhranged from –72 to –118 mV, with half-activation occurring at –100 mV. Ion-substitution experiments indicated that I his carried by both Na+ and K+ ions. 5-Hydroxytryptamine (5-HT) increased the amplitude of I hand its rale of activation. It also produced a positive shift of the activation curve of the conductance underlying I h Ghwithout altering the slope factor, thus indicating that the voltage dependence of I hwas modulated by 5-HT. Cs+ blocked both I hand the 5-HT-polentiated current in a voltage-independent manner, whereas Ba2+ had little effect. It is concluded that 5-HT increases I hby modulating the inwardly rectifying Na+-K+ channels in the salivary cells. The effect of 5-HT may be mediated by an increase in adenylate cyclase activity since I hwas increased by 8-bromocyclic AMP and by the phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine. In contrast, I hwas reduced by 8-bromo-cyclic GMPand by zaprinast (an inhibitor of cyclic GMP-scnsitive phosphodieslerase). Cyclic GMP itself also reduced I h, and the effect was specific to the 3,5 form; 2,3-cyclic GMP was inactive. The results suggest that the inward-rectifier channel may be modulated in opposite directions by cyclic AMP and cyclic GMPThis work was supported by a grant from the Science and Engineering Research Council (no. GR/F/17087). We are grateful to the SmithKline (1982) Foundation for provision of a pulse generator  相似文献   

17.
Summary Free-living or immobilized Chlamydomonas reinhardtii cells photoproduce ammonium from nitrite in a medium containing 1 mM of l-methionine-d,l-sulphoximine (MSX). Ammonium is accumulated in the medium to 8 mM final concentration, which inhibits nitrite uptake by the MSX-treated cells and consequently the excretion of ammonium is blocked. However, if ammonium was removed from the medium and nitrite and MSX periodically restored, the photoproduction process could be maintained over 96 h, with a final ammonium concentration of about 18 mM for free-living cells and 28 mM for immobilized ones. The MSX-treated cells showed a photoproduction productivity of 1300 mol NH 4 + · mg chlorophyll (Chl)-1, with an average production rate of 14 mol NH 4 + · mg Chl-1 per hour, for calcium alginate-entrapped cells, while the corresponding data for free-living ones was 650 mol NH 4 + · mg Chl-1 and 6.7 mol NH 4 + · mg Chl-1 per hour, respectively. Immobilized cells showed a significant increase in the nitrite uptake rate, probably due to a change in membrane permeability as a consequence of cell-matrix interactions.  相似文献   

18.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

19.
20.
Summary Leakage of ions (Na+, K+) and phosphorylated metabolites (phosphorylcholine, 2-deoxyglucose 6-phosphate) through membrane lesions in intact cells or in cells modified by pore-forming agent has been studied. Leakage from intact cells isinduced by protons and by divalent cations such as Cu2+, Cd2+ or Zn2+. Leakage from agent-modified cells—or across phospholipid bilayers modified by agent—isprevented by low concentrations of the same cations and by higher concentrations of Ca2+, Mn2+ or Ba2+; Mg2+, dimethonium, spermine, or spermidine are virtually ineffective. The relative efficacy of a particular cation (e.g. Ca2+) depends more on cell type than on the nature of the pore-forming agent. The predominant effect is on binding of cation to specific sites, not on surface charge. Surface charge, on the other hand, does affect leakage from agent-modified cells in that suspension in nonionic media reduces leakage, which can be restored by increasing the ionic strength: univalent (Na+, K+, Rb+, NH 4 + ) and divalent (Mg2+, dimethonium) cations are equally effective; addition of protons or divalent cations such as Zn2+ to this system inhibits leakage. From this and other evidence here presented it is concluded that leakage across membranes is modulated by the presence of endogenous anionic components: when these are in the ionized state, leakage is favored; when unionized (as a result of protonation) or chelated (by binding to divalent cation), leakage is prevented. It is suggested that such groups are exposed at the extracellular face of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号