首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulators of fetal liver differentiation in vitro   总被引:5,自引:0,他引:5  
Seventeen-day-old fetal rat hepatocytes were employed to examine factors required to promote differentiation in vitro. In the absence of effectors, primary fetal hepatocytes dedifferentiated, as characterized by the rapid decline in synthesis of fetal alpha-fetoprotein (AFP), albumin, and transferrin. On the other hand, cells maintained in the presence of glucocorticoid hormone produced high levels of albumin and transferrin. Glucocorticoid could not prevent the decline in fetal AFP synthesis, but induced synthesis of the 65K variant AFP--the major AFP species produced by adult rat liver. Fetal hepatocytes maintained in the presence of 8-bromo-cAMP (8-BrcAMP), or methyl isobutyl xanthine (MIX), an agent that increases intracellular cAMP levels, synthesized high levels of fetal AFP and albumin but reduced levels of transferrin. Both glucocorticoid and 8-BrcAMP or MIX induced expression of adult liver-specific genes such as tyrosine aminotransferase (TAT) and phosphoenolpyruvate carboxykinase (PEPCK), suggesting that these fetal hepatocytes have matured. Cells maintained in the presence of glucocorticoid hormone and MIX (or 8-BrcAMP) contained more albumin, TAT, and PEPCK mRNAs and synthesized increased amounts of the 65K variant AFP than those with either agent alone. However, the glucocorticoid/MIX cells produced intermediate levels of the fetal AFP and transferrin. Our data indicate that both glucocorticoid hormone and cAMP are necessary for optimal differentiation of fetal hepatocytes in vitro.  相似文献   

2.
We quantitatively evaluated two recently-developed novel techniques for hepatocyte cultivation in a dish level; that is, spheroid culture and membrane-supported collagen (CN) gel sandwich culture, in terms of cellular maintenance, albumin secretion and 7-ethoxycoumarin (7EC) metabolism to 7-hydroxycoumarin (7HC) as a marker for cytochrome P450 IA1 activity in the presence and absence of rat liver epithelial cell line (RLEC) during one month of culture, together with conventional coculture with RLEC in CN-coated dishes as a control. RLEC prevented spheroid loss caused by its detachment from the culture dishes often occurring in pure culture. CN-gel sandwich by itself improved remarkably hepatocyte maintenance when compared with CN-gel free systems, thereby resulting in enhancement of overall functional expressions as compared with CN-gel free systems. RLEC in CN-gel sandwhich, however, reduced cellular sustainment probably due to its suppression of hepatocyte growth. Although there were no significant differences in albumin secretion per cell among the five cultures examined, CN-gel sandwich expressed markedly higher 7EC metabolizing activity per cell, where RLEC presence had a preferable influence. Consequently, membrane-supported CN-gel sandwich was the most superior technique for hepatocyte cultivation from the standpont of both cellular maintenance and its functional expressions per cell.  相似文献   

3.
Hepatocytes isolated from neonatal (NN) and adult (AD) rats were seeded on fibronectin coated substratum and cultured in arginine-free medium supplemented with various combinations of insulin, dexamethasone, triiodothyronine (T3), albumin, and transferrin, in presence or absence of fibronectin depleted serum (FDS). The main finding is that in response to certain hormone mixtures, both NN and AD hepatocytes can be stimulated to proliferate, as revealed by an increase in cell number, a [3H]thymidine incorporation into nuclei, and extractable DNA as well as the appearance of mitotic figures. Moreover, this proliferative activity is associated with changes in hepatocyte ploidy. However, the proliferative response of NN hepatocytes to hormone action is much different from that of AD hepatocytes, and the addition of FDS amplifies this activity in NN but inhibits it in AD hepatocyte cultures. Measurements of tyrosine aminotransferase and lactate dehydrogenase activities indicate a good preservation of NN and AD hepatocyte functional integrity under certain culture conditions. A good maintenance of albumin production in NN and AD hepatocyte cultures requires the presence of dexamethasone, whereas the alpha-fetoprotein production in NN hepatocyte cultures is reduced quite rapidly under most conditions. No alpha-fetoprotein is detectable in AD hepatocyte cultures.  相似文献   

4.
Study of liver differentiation in vitro   总被引:11,自引:3,他引:8       下载免费PDF全文
A clonal rat fetal liver cell line that expresses the functions of differentiated liver cells under controllable conditions has been established. Normal fetal liver cells were transformed by a temperature-sensitive A (tsA) mutant (tsA209) of simian virus 40. At the permissive temperature (33 degrees C), the tsA209-transformed liver cell line (RLA209-15) can be cultured indefinitely and cloned readily. The RLA209-15 cells were temperature sensitive for maintenance of the transformed phenotype. These transformed liver cells selectively lost four characteristics of the transformed phenotype at the restrictive temperature (40 degrees C): generation time of the cells increased, the saturation density decreased, the efficiency of growth on nontransformed cell layers decreased, and the ability to clone in soft agar was lost. The transformation can be reversed simply by a shift in temperature. RLA209-15 fetal liver cells synthesized alpha-fetoprotein albumin, and transferrin. At 33 degrees C, the levels of these liver proteins were relatively low. At 40 degrees C the transformed phenotype was lost and the levels of alpha-fetoprotein, albumin, and transferrin were greatly increased. At the restrictive temperature, maximal induction of the synthesis of alpha-fetoprotein, albumin, and transferrin was achieved 3-4 d after the upward shift in temperature. The synthesis of alpha-fetoprotein then decreased; the synthesis of albumin and transferrin, however, was maintained. A second phase of albumin and transferrin synthesis was observed in all cultures after 6 d or more at 40 degrees C. Alpha-Fetoprotein, albumin, and transferrin secreted by RLA209-15 cells were immunologically indistinguishable from authentic alpha-fetoprotein, albumin, and transferrin, respectively. RLA209-15 cells, like primary cultures of hepatocytes and a simian virus 40 tsA255-transformed fetal liver cell line (RLA255-4) reported earlier from this laboratory, responded to glucagon with markedly elevated levels of cyclic AMP. Thus, it appears that glucagon receptors characteristic of hepatocytes are retained in the simian virus 40 tsA-transformed fetal liver cells.  相似文献   

5.
Summary The secondary culture of non-transformed parenchymal hepatocytes has not been possible. STO feeder cell-dependent secondary cultures of fetal pig hepatocytes were established by colony isolation from primary cultures of 26-d fetal livers. The liver cells had the typical polygonal morphology of parenchymal hepatocytes. They also spontaneously differentiated to form small biliary canaliculi between individual cells or progressed further to large multicellular duct-like structures or cells undergoing gross lipid accumulation and secretion. The secondary hepatocyte cultures expressed alpha-fetoprotein (AFP), albumin, and β-fibrinogen mRNA, and conditioned medium from the cells contained elevated levels of transferrin and albumin. STO feeder cell co-culture may be useful for the sustainable culture of hepatocytes from other species.  相似文献   

6.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

7.
8.
Fetal rat hepatocytes (day 19 of gestation) multiply in primary culture in arginine-free, hydrocortisone-containing chemically defined medium MX-82 supplemented either with epidermal growth factor (EGF) or insulin or both. In contrast, hepatocytes did not multiply under similar culture conditions using Dulbecco's minimum essential medium (DMEM). Cells underwent two divisions within 10 days in cultures maintained in MX-82 medium without a medium change, and cells grew to increased final cell densities when the medium was renewed every third day. When the medium MX-82 was enriched by the addition of lipids, intermediary metabolites, and trace metals (medium MX-83), cells grew to higher densities. In the absence of the growth factors, cells became quiescent and subsequently could be induced to synthesize DNA in response to EGF. With the increasing numbers of cells per dish, the growth response of the hepatocytes diminished. Levels of hepatocyte-specific albumin and alpha-fetoprotein mRNAs at day 0 were similar to those observed at day 10 in primary fetal rat hepatocyte cultures and were maintained at higher levels in medium MX-83 than in medium MX-82.  相似文献   

9.
Regulation of rat liver maturation in vitro by glucocorticoids.   总被引:3,自引:1,他引:2       下载免费PDF全文
The biochemistry of liver maturation was studied by using the RLA209-15 fetal rat hepatocyte line that is temperature sensitive for maintenance of the differentiated fetal liver phenotype. At 33 degrees C these cells were dedifferentiated; but at 40 degrees C they were phenotypically differentiated and, like normal fetal hepatocytes, synthesized moderate levels of albumin and transferrin, high levels of authentic (69,000 and 73,000 molecular weight) rat fetal alpha-fetoprotein (AFP), and low levels of a 65,000-molecular-weight variant AFP. Our results indicated that administration of glucocorticoid hormones to RLA209-15 cells at 40 degrees C induced a series of events associated with normal hepatocyte maturation; synthesis of fetal AFP was inhibited, whereas the synthesis of variant AFP, albumin, transferrin, tyrosine aminotransferase, and alpha 1-acid glycoprotein was induced. The variant AFP was produced by RLA209-15 cells at both temperatures and was encoded by an mRNA of 1.7 kilobases (kb). The fetal AFP was encoded by an mRNA of 2.2 kb. Normal adult rat liver contained three AFP mRNAs of 2.2 (minor), 1.7, and 1.5 kb. The 1.7-kb adult liver AFP mRNA comigrated with the RNA found in RLA209-15 cells, and both directed the synthesis of a 50,000-molecular-weight precursor polypeptide of the variant AFP. Administration of glucocorticoids to RLA209-15 cells grown at 33 degrees C stimulated synthesis of both the fetal and variant AFPs, but the levels of the 2.2-kb AFP mRNA were preferentially increased. RLA209-15 cells contained two glucocorticoid receptor mRNAs of 6.8 and 4.5 kb. The glucocorticoid-mediated maturation described above was blocked by the antiglucocorticoid RU486.  相似文献   

10.
Fetal and neonatal rat hepatocytes were cultured alone or in association with another liver epithelial cell type, in a medium with or without hydrocortisone. Secretion of albumin and alpha-fetoprotein decreased in pure hepatocyte culture, whereas in co-culture it remained stable for several days. Furthermore, addition of hydrocortisone to the co-culture medium induced a rapid increase in albumin production which was maintained at a high level. In contrast, alpha-fetoprotein production was inhibited. At the same time, an abundant extracellular material was secreted between and around hepatocyte colonies. The results demonstrate that the reciprocal relation between albumin and alpha-fetoprotein production which occurs during in vivo perinatal hepatocyte maturation is also observed in vitro. Both cell-cell contacts and glucocorticoids play a key role in this process. It appears that fetal and neonatal hepatocytes can maturate when maintained in a co-culture system.  相似文献   

11.
A series of simian virus 40 (SV40)-immortalized hepatocyte cell lines were characterized for albumin production, the regulation of albumin production, and the expression of other liver-specific genes. This series of cell lines is particularly useful for studying the regulation of hepatocyte gene expression because the cell lines express liverlike levels of a number of liver-specific functions and do so while growing in a chemically defined medium. SV40-immortalized hepatocyte cell lines were derived from colonies of albumin-producing epithelial cells that arose after primary hepatocytes maintained in chemically defined medium were transfected with SV40 DNA. Some cell lines secreted albumin at levels equal to or greater than those secreted by freshly plated primary hepatocytes, and all but one line continued to produce albumin for more than 20 passages. The variation in albumin secretion among cell lines reflected differences in the amount of albumin produced per cell and not in the percentage of albumin-producing cells in each line. The characterization of selected cell lines showed that albumin production was regulated by cell density during the growth cycle. Albumin production in most cell lines was also regulated by dexamethasone; however, one cell line continued to produce high levels of albumin when the cells were grown in medium lacking dexamethasone, demonstrating that although glucocorticoid can induce albumin production in some cell lines, it is not required for high levels of albumin production by all cells in culture. Regulation of albumin production measured at the level of protein secretion was paralleled by changes in steady-state levels of a 2.3-kilobase albumin RNA. Albumin-producing SV40-immortalized hepatocytes secreted a variety of other plasma proteins, including transferrin, hemopexin, and the third component of complement. These cells also expressed tyrosine aminotransferase activity that was inducible by dexamethasone. Alpha-fetoprotein production was not detected in any of the cell lines examined.  相似文献   

12.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   

13.
A serum-free, feeder cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1-wk-old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder cell layers of mitotically blocked mouse fibroblasts. In serum-free medium containing 1% DMSO and 1 μM dexamethasone, confluent monolayers of hepatocytes formed and could be maintained for several wk. Light and electron microscopic analysis showed hepatocytes with in vivo-like morphology, and many hepatocytes were sandwiched between the feeder cells. When isolated liver cells were cultured in medium without dexamethasone but with 0.5% DMSO, monolayers of cholangioctyes formed that subsequently self-organized into networks of multicellular ductal structures, and whose cells had monocilia projecting into the lumen of the duct. Gamma-glutamyl transpeptidase (GGT) was expressed by the cholangiocytes at their apical membranes, i.e., at the inner surface of the ducts. Cellular GGT activity increased concomitantly with the development of ductal structures. Cytochrome P-450 was determined in microsomes following addition of metyrapone to the cultures. In vivo-like levels of P-450s were found in hepatocyte monolayers while levels of P-450 were markedly reduced in cholangiocyte monolayers. Serum protein secretion in conditioned media was analyzed by Western blot and indicated that albumin, transferrin, and haptoglobin levels were maintained in hepatocytes while albumin and haptoglobin declined over time in cholangiocytes. Quantitative RT-PCR analysis showed that serum protein mRNA levels were significantly elevated in the hepatocytes monolayers in comparison to the bile ductule-containing monolayers. Further, mRNAs specific to cholangiocyte differentiation and function were significantly elevated in bile ductule monolayers in comparison to hepatocyte monolayers. The results demonstrate an in vitro model for the study of either porcine hepatocytes or cholangiocytes with in vivo-like morphology and function.  相似文献   

14.
Summary Hepatocytes were isolated from human fetal liver in order to analyze the direct effects of growth factors and hormones on human hepatocyte proliferation and function. Mechanical fragmentation and then dissociation of fetal liver tissue with a collagenase/dispase mixture resulted in high yield and viability of hepatocytes. Hepatocytes were selected in arginine-free, ornithine-supplemented medium and defined by morphology, albumin production and ornithine uptake into cellular protein. A screen of over twenty growth factors, hormones, mitogenic agents and crude organ and cell extracts for effect on the stimulation of hepatocyte growth revealed that EGF, insulin, dexamethasone, and factors concentrated in bovine neural extract and hepatoma cell-conditioned medium supported attachment, maintenance and growth of hepatocytes on a collagen-coated substratum. The population of cells selected and defined as differentiated hepatocytes had a proliferative potential of about 4 cumulative population doublings. EGF and insulin synergistically stimulated DNA synthesis in the absence of other hormones and growth factors. Although neural extracts enhanced hepatocyte number, no effect on DNA synthesis of neural extracts or purified heparin-binding growth factors from neural extracts could be demonstrated in the absence or presence of defined hormones, hepatoma-conditioned medium or serum. Hepatoma cell-conditioned medium had the largest impact on both hepatocyte cell number and DNA synthesis under all conditions. Dialyzed serum protein (1 mg/ml) at 10 times higher protein concentration had a similar effect to hepatoma cell-conditioned medium (100 μg/ml). The results suggest that hepatoma cell conditioned medium may be a concentrated and less complicated source than serum for purification and characterization of additional normal hepatocyte growth factors. This work was supported by NIH grant DK35310. Editor’s statement Many investigators have struggled with the special problems associated with culture of differentiated hepatocytes. In this paper attention is given to the specific growth factor requirements for fetal human hepatocytes. The observation that factors from hepatoma conditioned medium or neural extracts enhanced the growth of the cells may indicate that additional growth factors are to be identified that are important in the survival and proliferation of hepatocytes, and may also indicate that the malignant transformation of these cells may involve the production of autocrine growth stimulators.  相似文献   

15.
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.  相似文献   

16.
Short-term pure cultures and long-term cocultures of adult rat hepatocytes with rat liver epithelial cells, presumably derived from primitive biliary cells, were used to define in vitro models of iron overloaded hepatocytes in order to understand the molecular mechanism responsible for liver damage occurring in patients with hemochromatosis. In vitro iron overload was obtained by daily addition of ferric nitrilotriacetate to the culture medium. A concentration of 20 microM ferric salt induced hepatocyte iron overload with minimal cytotoxicity as evaluated by cell viability, morphological changes of treated cells and cytosolic enzyme leakage into the culture medium. The effects of iron overload on protein biosynthesis and secretion were studied in both short-term pure cultures and long-term cocultures of hepatocytes. The amounts of intracellular and newly synthesized proteins were never modified by the iron treatment. Furthermore, neither the relative amounts of transferrin and albumin mRNAs nor their translational products were altered by iron overload. Moreover, no change in the transferrin isomeric forms were observed in treated cells. In contrast, a prolonged exposure of cocultured hepatocytes to 20 microM ferric salt led to a significant decrease in the amount of proteins secreted in the medium. This decrease included the two major secreted proteins, namely albumin and transferrin, and probably all other secreted proteins. These results demonstrate that iron loading alters neither the total nor the liver specific protein synthesis activity of cultured hepatocytes. They suggest that chronic overload may impede the protein secretion process.  相似文献   

17.
Hepatocytes of transgenic mouse fetuses harboring SV40 virus transforming gene sequences in the SV delta e-MGH fusion gene construct 202 driven by the mouse metallothionein (MT-I) enhancer [R. D. Palmiter, H. Y. Chen, A. Messing, and R. L. Brinster (1985) Nature (London) 316, 457-460] were cultured at Day 19 of gestation and established as a differentiated line expressing albumin and alpha-fetoprotein (AFP) mRNAs. Hepatocyte line FMH-202 contains integrated SV40 sequences, expresses SV40 T-antigen genes, and exhibits unlimited growth potential because it has been cultured 18 months without apparent decrease in cell viability or in growth rate that could suggest the occurrence of a crisis period. Immortalized cells multiply in chemically defined medium deficient in arginine with transferrin plus insulin, whereas EGF, insulin, and transferrin are obligatory requirements for fetal or newborn mouse hepatocyte multiplication in primary cultures. Cells did not grow in agar and were not tumorigenic in nude mice. Their immortalized, nonmalignant phenotype was further documented by low saturation densities of confluent monolayers showing no overgrowth, and by growth arrest in the absence of insulin with subsequent induction of DNA synthesis and resumption of cell growth in response to insulin. Thus, it appears that immortalized SV40 T-antigen-expressing hepatocytes are present in the liver of the transgenic mice. However, at later points in liver development the transforming activity of T-antigen becomes apparent and leads to hepatocellular carcinoma formation in vivo.  相似文献   

18.
Fetal hepatocytes cultured in medium supplemented with fetal calf serum (FCS) or Ultroser SF do not maintain production of albumin or transferrin beyond one week of culture. When dexamethasone (10(-7) M) is present, secretion of albumin and transferrin can be extended to two weeks, however, levels are extremely low. By three weeks, neither plasma protein can be detected in the culture medium in either conditions of culture. In contrast, hepatocytes maintained in medium supplemented with Ultroser G continue to produce albumin and transferrin at high levels for the entire three week period of this study. The morphology of the cultures are different. In FCS and Ultroser SF supplemented medium there are many more fibroblast and epithelial-like cells and relatively fewer cells which are distinctly hepatocytes when compared with Ultroser G supplemented medium. The level of tyrosine aminotransferase, which is a dexamethasone inducible enzyme, is found to be much higher in Ultroser G cultures, with no further increase demonstrable by addition of dexamethasone. In contrast, dexamethasone induces the enzyme by about eight-fold in cultures maintained in FCS supplemented medium. Therefore it appears that Ultroser G already contains sufficient steroid activity to maximize the level of tyrosine aminotransferase. A comparison between Ultroser C and SF (steroid-free) suggests that the mixture of steroid and steroid derivatives in the G formulation must be important in the maintenance of differentiated functions of hepatocytes in culture. However, supplementation of FCS cultures with dexamethasone, which is known to be present in Ultroser G, does not allow hepatocytes to retain their differentiated functions over an extended period. Therefore it is concluded that other components besides dexamethasone must be important.  相似文献   

19.
We explored the effect of extracellular matrix (ECM) produced by fetal and adult hepatocytes on tissue-specific gene expression and proliferation of fetal and adult hepatocytes. Adult hepatocytes ECM strongly induced expression of both albumin and HNF-4 in adult hepatocytes. In contrast, fibroblast ECM reduced the expression of mRNAs for albumin and alpha-fetoprotein in fetal hepatocytes. Adult hepatocytes ECM also increased the activity of liver-specific enzymes of adult hepatocytes (DPP IV and glucose-6-phosphatase) in both fetal and adult hepatocytes, while fetal hepatocyte-derived ECM increased activity of the fetal hepatocyte enzyme GGT in fetal hepatocytes. Fibroblast ECM was inhibitory for the activity of all enzymes assayed. Removal of heparin chains from the various matrices by pretreatment of the ECM with heparinase resulted in reduction of glucose-6-phosphatase and DPP IV in adult hepatocytes. Removal of chondroitin sulfate chains from fetal hepatocyte-derived ECM resulted in loss of induction of GGT in the fetal cells. Fetal hepatocytes proliferated best on adult hepatocyte-derived ECM. Adult hepatocytes showed only modest proliferation on both fetal and adult hepatocytes ECM and their growth was inhibited by fibroblast ECM. In conclusion, adult hepatocyte ECM better supports the expression of adult genes, whereas fetal hepatocyte ECM induced expression of fetal genes. Fibroblast derived-ECM was inhibitory for both proliferation and tissue-specific gene expression in fetal and adult hepatocytes. The data support a role for heparan sulfate being the active element in adult ECM, and chondroitin sulfate being the active element in fetal ECM.  相似文献   

20.
Dexamethasone can promote the differentiation of different tissues in vivo while dimethylsulfoxide is a commonly used inducer of differentiation in various tumor cell types in culture. In the present study, the effects of dexamethasone and dimethylsulfoxide on growth and functional activities of cultured differentiating suckling rat hepatocytes stimulated with various combinations of EGF, insulin, and glucagon were evaluated. Hepatocytes stimulated with EGF and either insulin or glucagon entered S phase and mitosis after a lag period of 24 h. These hormonal factors thus provide simple combinations of hepatocyte-growth regulators. Dexamethasone in the presence of EGF and glucagon inhibited the initiation of DNA synthesis and mitosis, but it had no effect on EGF-insulin stimulated cultures. Such a differential effect of dexamethasone was observed at concentrations ranging from 4 nM to 200 microM. alpha-Fetoprotein, albumin, and tyrosine aminotransferase were used as typical markers of hepatocyte differentiation status. Irrespective of the combinations of growth-promoting factors used, dexamethasone inhibited alpha 1-fetoprotein production and maintained albumin production and tyrosine aminotransferase inducibility. In contrast, dimethylsulfoxide at 2% inhibited hepatocyte growth and supported the maintenance of the production of both alpha 1-fetoprotein and albumin, independent of the hormonal growth regulators used. On this basis, dexamethasone and dimethylsulfoxide act as distinct modulators of growth and maturation of cultured differentiating suckling rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号