首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine the respective roles of energy substrates and insulin on leptin secretion from white adipocytes. Cells secreted leptin in the absence of glucose or other substrates, and addition of glucose (5 mM) increased this secretion. Insulin doubled leptin secretion in the presence of glucose (5 mM), but not in its absence. High concentrations of glucose (up to 25 mM) did not significantly enhance leptin secretion over that elicited by 5 mM glucose. Similar results were obtained when glucose was replaced by pyruvate or fructose (both 5 mM). L-Glycine or L-alanine mimicked the effect of glucose on basal leptin secretion but completely prevented stimulation by insulin. On the other hand, insulin stimulated leptin secretion when glucose was replaced by L-aspartate, L-valine, L-methionine, or L-phenylalanine, but not by L-leucine (all 5 mM). Interestingly, these five amino acids potently increased basal and insulin-stimulated leptin secretion in the presence of glucose. Unexpectedly, L-glutamate acutely stimulated leptin secretion in the absence of glucose or insulin. Finally, nonmetabolizable analogs of glucose or amino acids were without effects on leptin secretion. These results suggest that 1) energy substrates are necessary to maintain basal leptin secretion constant, 2) high availability of glycolysis substrates is not sufficient to enhance leptin secretion but is necessary for its stimulation by insulin, 3) amino acid precursors of tricarboxylic acid cycle intermediates potently stimulate basal leptin secretion per se, with insulin having an additive effect, and 4) substrates need to be metabolized to increase leptin secretion.  相似文献   

2.
Leptin is a hormone that plays a central role in the regulation of food intake and energy expenditure. Originally discovered in mature white adipocytes, it was subsequently isolated from the gastric mucosa. This tissue contains a large number of epithelial endocrine and exocrine cells secreting leptin in the blood stream and in the gastric lumen, respectively. Light and electron microscopy have shown that adipocytes and gastric epithelial cells contain leptin along their rough endoplasmic reticulum-Golgi-granules secretory pathway. Both tissues synthesize a soluble form of the leptin receptor that is secreted bound to leptin in the blood and into the gastric juice. This soluble receptor protect leptin and enhances its half-life. Despite the similarities in the mechanisms of leptin secretion by adipocytes and gastric epithelial cells, they are in fact radically different. In gastric cells leptin follows a rapid regulated secretion pathway whereas adipocytes secrete leptin in a constitutive slow fashion. These differences can be explained by the specific roles play by leptin originating from these two different tissues. Gastric leptin is involved in the short-term regulation of digestion, including delay of gastric emptying, absorption of nutrients by the intestinal wall and secretion of gastric, intestinal and pancreatic hormones. On the other hand, leptin secreted by white adipocytes acts primarily on the hypothalamus for the long-term regulation of food intake. Therefore, the coordination of adipose and gastric leptins ensures the proper management of food processing and energy storage.  相似文献   

3.
Adipose cells produce and secrete several physiologically important proteins, such as lipoprotein lipase (LPL), leptin, adipsin, Acrp30, etc. However, secretory pathways in adipocytes have not been characterized, and vesicular carriers responsible for the accumulation and transport of secreted proteins have not been identified. We have compared the intracellular localization of two proteins secreted from adipose cells: leptin and LPL. Adipocytes accumulate large amounts of both proteins, suggesting that neither of them is targeted to the constitutive secretory pathway. By means of velocity centrifugation in sucrose gradients, equilibrium density centrifugation in iodixanol gradients, and immunofluorescence confocal microscopy, we determined that LPL and leptin were localized in different membrane structures. LPL was found mainly in the endoplasmic reticulum with a small pool being present in low density membrane vesicles that may represent a secretory compartment in adipose cells. Virtually all intracellular leptin was localized in these low density secretory vesicles. Insulin-sensitive Glut4 vesicles did not contain either LPL or leptin. Thus, secretion from adipose cells is controlled both at the exit from the endoplasmic reticulum as well as at the level of "downstream" secretory vesicles.  相似文献   

4.
5.
To better define the molecular mechanisms underlying leptin release from adipocytes, we developed a novel protocol that maximizes leptin production from 3T3-L1 adipocytes. The addition of a PPARgamma agonist to the Isobutylmethylxanthine/Dexamethasone/Insulin differentiation cocktail increased leptin mRNA levels by 5-fold, maintained insulin sensitivity, and yielded mature phenotype in cultured adipocytes. Under these conditions, acute insulin stimulation for 2 h induced a two-fold increase in leptin secretion, which was independent of new protein synthesis, and was not due to alterations in glucose metabolism. Stimulation with insulin for 15 min induced the same level of leptin release and was blocked by Brefeldin A. Inhibiting PI 3-kinase with wortmannin had no effect on insulin stimulation of leptin secretion. These studies show that insulin can stimulate leptin release via a PI3K independent mechanism and provide a cellular system for studying the effect of insulin and potentially other mediators on leptin secretion.  相似文献   

6.
Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway   总被引:5,自引:0,他引:5  
Visfatin is a secretory protein which exerts insulin mimetic and proinflammatory effects, also functioning as an intracellular enzyme to produce NAD. Plasma visfatin levels and visfatin mRNA expression in adipose tissues are increased in obese subjects. Visfatin does not have a decent cleavable signal sequence, and the mechanism, that mediates release of visfatin from adipocytes, remains poorly understood. In this study, we demonstrate that visfatin is released abundantly into culture medium from 3T3-L1 adipocytes. Subcellular fractionation analysis showed that visfatin was localized in the cytosol, but not in nucleus, membrane, vesicles, or mitochondria fractions. Visfatin release was not reduced by Brefeldin A and Monensin, inhibitors of endoplasmic reticulum (ER)-Golgi-dependent secretion. In addition, visfatin was not released on microvesicles. These results suggest that visfatin should be released from 3T3-L1 adipocytes via an ER-Golgi or microvesicles independent pathway.  相似文献   

7.
Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Several studies have suggested that leptin can be regulated by macronutrients intake. Arachidonic acid is a dietary fatty acid known to affect cell metabolism. Controversial effects of this fatty acid on leptin have been reported. The aim of this experimental trial was to evaluate the effect of the arachidonic acid on basal and insulin-stimulated leptin secretion and expression in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of the arachidonic acid on indices of adipocyte metabolism were also examined. Isolated adipocytes were incubated with arachidonic acid (1-200 microM) in the absence and presence of insulin (1.6 nM). Leptin secretion and expression, glucose utilization and lactate production were determined at 96 h. The arachidonic acid (200 microM) inhibited both the basal and insulin stimulated leptin secretion and expression. Glucose utilization was not affected by the acid. Basal lactate production was increased by the fatty acid at the highest concentration used (200 microM), however lactate production in presence of insulin was not modified. Finally, the percentage of glucose carbon released as lactate was significantly increased (200 microM). These results suggest that the inhibitory effect of the arachidonic acid on leptin secretion and expression may be due, al least in part, to the increase in the anaerobic utilization of glucose.  相似文献   

8.
The mechanism by which calcium regulates leptin secretion was studied in adipocytes isolated from rat white adipose tissue. Incubation of adipocytes in a medium containing glucose, but no calcium, markedly inhibited insulin-stimulated leptin secretion (ISLS) and synthesis, without affecting basal leptin secretion or lipolysis. However, when pyruvate was used as a substrate, ISLS was insensitive to the absence of calcium. Likewise, the stimulatory effects of insulin were completely prevented by phloretin, cytochalasin B, and W-13 (3 agents that interfere with early steps of glucose metabolism) in the presence of glucose, but not in the presence of pyruvate. Thus calcium appears to be specifically required for glucose utilization. On the other hand, (45)Ca uptake and leptin secretion were not affected by insulin or by inhibitors of L-type calcium channels. However, agents increasing plasma membrane permeability to calcium (high calcium concentrations, A-23187, and ATP) increased (45)Ca uptake and concomitantly inhibited ISLS. Similarly, release of endogenous calcium stores by thapsigargin inhibited ISLS in a dose-dependent manner. ATP, A-23187, calcium, and thapsigargin inhibited ISLS, even in the presence of pyruvate. These results show that 1) extracellular calcium is necessary for ISLS, mainly by affecting glucose uptake, 2) insulin does not affect extracellular calcium uptake, and 3) increasing cytosolic calcium by stimulating its uptake or its release from endogenous stores inhibits ISLS at a level independent of glucose metabolism. Thus calcium regulates leptin secretion from adipocytes in a manner that is markedly different from its role in the exocytosis of many other polypeptidic hormones.  相似文献   

9.
Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, has been shown to stimulate leptin mRNA expression and secretion in 3T3-L1 cells. However, other studies have reported inhibitory effects of EPA on leptin expression and secretion in vivo and in vitro. To determine the direct effects of EPA on basal and insulin-stimulated leptin secretion, isolated rat adipocytes were incubated with EPA in the absence and presence of insulin. EPA (10, 100, and 200 microM) increased basal leptin gene expression and secretion (+43.8%, P < 0.05; +71.1%, P < 0.01; and +73.7%, P < 0.01, respectively). EPA also increased leptin secretion in the presence of 1.6 nM insulin; however, the effect was less pronounced than in the absence of it. Because adipocyte glucose and lipid metabolism are involved in the regulation of leptin production, the metabolic effects of this fatty acid were also examined. EPA (200 microM) increased basal glucose uptake in isolated adipocytes (+50%, P < 0.05). Anaerobic metabolism of glucose, as assessed by lactate production and proportion of glucose metabolized to lactate, has been shown to be inversely correlated to leptin secretion and was decreased by EPA in both the absence and presence of insulin. EPA increased basal glucose oxidation as determined by the proportion of (14)C-labeled glucose metabolized to CO(2). Lipogenesis ((14)C-labeled glucose incorporation into triglyceride) was decreased by EPA in the absence of insulin, whereas lipolysis (glycerol release) was unaffected. The EPA-induced increase of basal leptin secretion was highly correlated with increased glucose utilization (r = +0.89, P < 0.01) and inversely related to the anaerobic glucose metabolism to lactate. EPA's effect on insulin-stimulated leptin secretion was not related to increased glucose utilization but was inversely correlated with anaerobic glucose metabolism to lactate (r = -0.84, P < 0.01). Together, the results suggest that EPA, like insulin, stimulates leptin production by increasing the nonanaerobic/oxidative metabolism of glucose.  相似文献   

10.
Insulin and C-peptide antigenic sites have been revealed in rat pancreatic B cells by applying immunohistochemical and cytochemical techniques. Fluorescein and rhodamine stains at the light-microscope level have detected both antigens in the same B cells. With the protein A-gold technique, labeling for both antigens was found in the cisternae of the rough endoplasmic reticulum, in those of the transitional elements, in all the cisternae of the Golgi apparatus except in the trans-most one, in the smooth but not in the coated vesicles, in the immature and mature secretory granules, and in some lysosomal (multigranular) structures. The fixation procedure used yielded excellent ultrastructural preservation which allowed for high resolution. The various control experiments demonstrated the high specificity of the results. Quantitative evaluations confirmed the qualitative observations in that they documented the specificity of the label and revealed the presence of an increasing gradient for both antigenic sites along the endoplasmic reticulum-Golgi-granule secretory pathway. The quantification also demonstrated various sites in which an increased labeling occurs: the rough endoplasmic reticulum, the smooth vesicles, the trans-cisternae of the Golgi apparatus, and the immature and the mature secretory granules. The Golgi apparatus was composed of three different subcompartments distinguished by their concentration of label. These include the cisternae on the cis-side, those on the trans-side, and the trans-most rigid cisternae. Since insulin and C-peptide form the proinsulin chain, their antigenic sites were found in the same locations along the secretory pathway; differences in location appeared only in the secretory granules, where insulin was concentrated in the core, while C-peptide was found in both the core and the halo of the granules. Furthermore, in the mature secretory granules displaying a crystalline core, insulin was restricted to the core, while C-peptide was confined to the halo. These results are in accord with the biochemical data, which indicate that simultaneous localization of both antigenic sites in compartments upstream to the immature secretory granules reflects their presence in the form of proinsulin. However, upon dissociation of proinsulin into insulin and C-peptide, both antigenic sites are segregated in different locations. The peptides appear to share parallel pathways and a fate which includes secretion through exocytosis or degradation by the lysosomal system.  相似文献   

11.
Mouse mammary epithelial cells cultivated on collagen gels synthesize and secrete casein in a hormone-dependent manner. Fine-structure electron microscopy of secretory cultures revealed numerous cytoplasmic structures surrounded by membrane that is studded with ribosomes. The structures appear to be distended rough endoplasmic reticulum (RER). Electron microscope protein A-colloidal gold immunolocalization showed casein antiserum-specific deposition of gold particles over the RER cytoplasmic vesicles in cells provided insulin, prolactin, and hydrocortisone (IPF). Nonimmune antiserum showed no gold particle deposition over these cytoplasmic structures. Epithelia provided only insulin showed no such cytoplasmic vesicles nor any specific deposition of gold particles. Immunoblot analysis of cell lysate and culture medium showed casein only in IPF-treated cultures. It appears that the casein secretory pathway in collagen gel cultured mammary epithelia is blocked at the step that fuses RER vesicles to Golgi membrane. The data raise questions regarding the processing and maturation of casein and the mechanism of casein secretion in these cultures.  相似文献   

12.
This paper describes the ultrastructure of the seminal vesicle and the isoelectric focusing patterns of its secretion during sexual maturation and after allatectomy in Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae). In epithelia from seminal vesicles of newly fledged males, the rough endoplasmic reticulum is well developed, and Golgi complexes are elaborate, which indicates the gland is metabolically active. The cells also contain large glycogen deposits and the lumen microvilli are well differentiated. These ultrastructural features are more dominant in 24-hr-old adults where the cytoplasm is clearly differentiated into basal and apical regions. Basally, the cytoplasm is dominated by rough endoplasmic reticulum, large Golgi complexes, glycogen deposits and numerous mitochondria, while the apical cytoplasm is filled with large secretory and/or lysosomal vesicles. Between days 3 and 7, the ultrastructural features change little other than the rough endoplasmic reticulum cisternae, which become vesicular. Analysis by isoelectric focusing shows that the amount of secretory protein increases with age until day 3, at which time the gland contains its full complement of secretion. In seminal vesicles from allatectomized insects, ultrastructural features of cells and isoelectric focusing patterns of the secretion arc identical to those from normal males.  相似文献   

13.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

14.
Rodent leptin is secreted by adipocytes and acutely regulates appetite and chronically regulates body weight. Mechanisms for leptin secretion in cultured adipocytes were investigated. Acutely, energy-producing substrates stimulated leptin secretion about twofold. Biologically inert carbohydrates failed to stimulate leptin secretion, and depletion of intracellular energy inhibited leptin release. There appears to be a correlation between intracellular ATP concentration and the rate of leptin secretion. Insulin increased leptin secretion by an additional 25%. Acute leptin secretion is calcium dependent. When incubated in the absence of calcium or in the presence of intracellular calcium chelators, glucose plus insulin failed to stimulate leptin secretion. In contrast, basal leptin secretion is secreted spontaneously and is calcium independent. Adipocytes from fatter animals secrete more leptin, even in the absence of calcium, compared with cells from thinner animals. Acute stimulus-secretion coupling mechanisms were then investigated. The potassium channel activator diazoxide and the nonspecific calcium channel blockers nickel and cadmium inhibited acute leptin secretion. These studies demonstrate that intracellular energy production is important for acute leptin secretion and that potassium and calcium flux may play roles in coupling intracellular energy production to leptin secretion.  相似文献   

15.
Leptin regulates appetite, inhibits food intake, and seems to increase energy expenditure. We investigated the effect of triiodothyroacetic acid (Triac), a metabolite of T3, which seems to be more thermogenic than T3, on leptin secretion and mRNA expression. Rat primary cultures of white and brown adipocytes were treated with increasing concentrations of Triac and T3. The effect of different types of serum and insulin concentrations was also tested. Serum inhibited leptin secretion and mRNA expression. Leptin secretion was also clearly inhibited by Triac and T3 in a dose-dependent manner and with similar potency. In the presence of norepinephrine (NE), Triac and T3 had a similar inhibitory effect, but the inhibition was almost complete in white adipocytes. Parallel results were found at the mRNA level, where Triac and T3 had similar inhibitory potency, both alone and with NE. We also show that insulin induced dose- and time-dependent increases in leptin secretion, reaching maximum levels at 0.5 and 3 nM insulin for white and brown adipocytes, respectively. Leptin secretion was higher in white than in brown adipocytes. The increases in leptin secretion were preceded by increases in leptin mRNA. In conclusion, these data demonstrate for the first time that Triac, like T3 and serum, inhibits leptin secretion and expression in white and brown adipocytes, whereas insulin has the opposite effect.  相似文献   

16.
The isoflavones--genistein and daidzein -- compounds found in high concentrations in soy play an important role in prevention of many diseases and affect some metabolic pathways. In the performed experiment it was demonstrated that genistein (5mg/kg b.w.) administered intragastrically for three days to male Wistar rats substantially diminished blood leptin level. Studies with isolated rat adipocytes revealed that this phytoestrogen strongly restricted leptin secretion from these cells. These effects were not accompanied by any changes in leptin gene expression in adipocytes. Daidzein-- an analogue of genistein -- used at similar concentrations did not affect blood leptin concentration, leptin secretion and expression of its gene. To determine the influence of genistein and daidzein on leptin release, adipocytes isolated from the epididymal fat tissue were incubated for 2h in Krebs--Ringer buffer. Leptin secretion stimulated by glucose with insulin was significantly diminished by genistein (0.25--1mM). This effect of genistein may arise from several aspects of its action in adipocytes documented in the literature such as the inhibition of glucose transport and metabolism, the attenuation of insulin signalling, the inhibition of cAMP phosphodiesterase and the stimulation of lipolysis. However, the bypassing of the restrictive action of genistein on glucose transport and glycolysis (by the use of alanine instead of glucose) and on insulin action (by the use of nicotinic acid) was not sufficient to restore leptin secretion from isolated adipocytes. It was also demonstrated that the restriction of the stimulatory influence of genistein on cAMP/protein kinase A (PKA) pathway (by the inhibition of PKA activity) did not improve leptin release. Results obtained in our experiments point at the restriction of glucose metabolism following formation of pyruvate as the pivotal reason of the inhibitory action of genistein on leptin release.  相似文献   

17.
Analysis of structural changes in barley aleurone cells during germination or following incubation of isolated layers in gibberellic acid with or without actinomycin D revealed extensive development of rough endoplasmic reticulum. Following the assembly of stacked rough endoplasmic reticulum, vesiculation occurred mainly in basal regions of the cell, resulting in a polar distribution of rough endoplasmic reticulum vesicles. It is postulated that these vesicles are involved in protein secretion, because smooth vesicles, derived from the rough endoplasmic reticulum, apparently become appressed to the plasma membrane. The increased α-amylase in the ambient medium and in cell homogenates correlated directly with formation and subsequent vesiculation of the rough endoplasmic reticulum. Furthermore, when cells were treated with actinomycin D and gibberellic acid, α-amylase synthesis was inhibited by 45% and secretion by 63%. These cells were characterized cytologically by large areas of disarrayed segments of fragmented rough endoplasmic reticulum, corresponding to a high intracellular level of α-amylase. In addition, small lipid bodies common to the segmented regions of rough endoplasmic reticulum were surrounded by fine fibrous material, short segments of rough endoplasmic reticulum, and free ribosomes, suggesting that actinomycin D had interfered with development and organization of rough endoplasmic reticulum.  相似文献   

18.
ABSTRACT The fine structure of female accessory reproductive gland (FARG) of the adult mealworm beetle, Tenebrio molitor is studied with light and electron microscopes. The FARG is a simple tubular organ that composed of two kinds of cells-secretory epithelial cells and duct forming cells. The lumen of FARG is lined with a thin cuticle and filled with secretory materials. Each secretory epithelial cell has its peculiar end apparatus in addition to well-developed rough endoplasmic reticulum (rER), mitochondria, and secretory vesicles. They are forming basal infolding along the plasma membrane. Along the inner surface of the plasma membrane, numerous secretory vesicles are seen. The glandular secretions of the epithelial secretory cells are synthesized via rER to Golgi apparatus, and are stored in the extracellular cavity in the epithelial cell. These secretions are drained to the lumen through the end apparatus and this type of glandular secretion in the insects is type III. Histochemical reactions reveal the major component of these glandular secretions is an acid mucopolysaccharide.  相似文献   

19.
In the present study we have examined the effect of dexamethasone on ob gene mRNA expression and leptin release from isolated human subcutaneous adipocytes. Dexamethasone stimulated leptin release from cultured adipocytes in a time- and dose-dependent manner. A two-fold increase in leptin release was detectable by 36 h of treatment with 10−7 M dexamethasone. Leptin release was preceded by a significant 83±30% increase in ob mRNA after 24 h exposure to the compound. Co-incubation of cells with dexamethasone (107 M) and insulin (10−7 or 10−9 M) completely blocked the dexamethasone-stimulated increase in ob mRNA and leptin release. These data demonstrate that insulin and glucocorticoids regulate leptin synthesis and release from human adipocytes in vitro. J. Cell. Biochem. 65:254–258. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 micromol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l) substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号