首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A b-type cytochrome and NADH-ferricyanide (FC) reductase were solubilized from Ascaris muscle microsomes by detergents and purified by column chromatography. The purified b-type cytochrome displayed absorption bands at 560 (alpha-peak), 525 (beta-peak), and 424 nm (gamma-peak), with a marked shoulder at 555 nm in the reduced from, 415 nm (gamma-peak) in the oxidized form. This absorption spectrum was different from that of rat liver microsomal cytochrome b5. The molecular weight was estimated to be about 100,000 by SDS-polyacrylamide gel electrophoresis, and the absorption spectrum of alkaline pyridine ferrohemochrome suggested that the prosthetic group of this cytochrome is protoheme. The molecular weight of the purified NADH-FC reductase was estimated to be about 55,000 by SDS-polyacrylamide gel electrophoresis. The purified reductase required NADH as a specific electron donor. The reductase efficiently reduced some redox dyes with NADH, but the reduction of cytochrome c was much slower. The purified reductase, like the membrane-bound reductase, was not inhibited by thiol reagents.  相似文献   

2.
With the use of detergents and successive column chromatographies, Tetrahymena b-type cytochrome was purified from microsomes to a specific content of 36.0 nmol per mg of protein. The purified form showed a single band on SDS-polyacrylamide gel with molecular weight of 22,000. The spectral properties of the reduced b-type cytochrome, the α-peak of which is situated at 560 nm and asymmetric with a shoulder at 556 nm, was different from that of rat liver microsomal cytochrome b5. However, it was reducible by NADH in the presence of NADH-cytochrome b5 reductase purified from rat liver microsomes.The results indicated that the microsomal b-type cytochrome should be designated as cytochrome b5 of a ciliated protozoan, Tetrahymena pyriformis.  相似文献   

3.
Cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from pig kidney microsomes. The enzyme fraction contained 7 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 50,500 upon SDS/polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 1,000 times more efficiently, and 25-hydroxylation of 1 alpha-hydroxyvitamin D3 up to 4000 times more efficiently, than the microsomes. The cytochrome P-450 required microsomal NADPH-cytochrome P-450 reductase for catalytic activity. Mitochondrial ferredoxin and ferredoxin reductase could not replace microsomal NADPH-cytochrome P-450 reductase. The enzyme preparation showed no detectable 25-hydroxylase activity towards vitamin D2 or 1 alpha-hydroxylase activity towards 25-hydroxyvitamin D3. CO inhibited the 25-hydroxylation by more than 85%. Mannitol, hydroquinone, catalase and superoxide dismutase did not affect the 25-hydroxylation. The possible role of the kidney microsomal cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

4.
Microbodies (peroxisomes and glyoxysomes), mitochondria, and microsomes from rat liver, dog kidney, spinach leaves sunflower cotyledons, and castor bean endosperm were isolated by sucrose density-gradient centrifugation. The microbody-limiting membrane and microsomes each contained NADH-cytochrome c reductase and had a similar phospholipid composition. NADH-cytochrome c reductase from plant and animal microbodies and microsomes was insensitive to antimycin A, which inhibited the activity in the mitochondrial fractions. The pH optima of cytochrome c reductase in plant microbodies and microsomes was 7.5–9.0, which was 2 pH units higher than the optima for the mitochondrial form of the enzyme. The activity in animal organelles exhibited a broad pH optimum between pH 6 and 9. Rat liver peroxisomes retained cytochrome c reductase activity, when diluted with water, KCl, or EDTA solutions and reisolated. Cytochrome c reductase activity of microbodies was lost upon disruption by digitonin or Triton X-100, but other peroxisomal enzymes of the matrix were not destroyed. The microbody fraction from each tissue also contained a small amount of NADH-cytochrome b5 reductase activity. Peroxisomes from spinach leaves were broken by osmotic shock and particles from rat liver by diluting in alkaline pyrophosphate. Upon recentrifugation liver peroxisomes yielded a core fraction containing urate oxidase at a sucrose gradient density of 1.23 g × cm−3, a membrane fraction at 1.17 g × cm−3 containing NADH-cytochrome c reductase, and soluble matrix enzymes at the top of the gradient.  相似文献   

5.
Rabbit antisera were prepared against cytochrome b5 and NADPH-cytochrome c reductase [EC 1.6.2.4] purified from rat liver microsomes, and utilized in examining the distribution of these and other membrane-bound enzymes among the vesicles of rat liver microsomal preparations by immunoprecipitation and immunoadsorption methods. Smooth microsomes with an average vesicular size of 200 nm (diameter) and sonicated smooth microsomes with an average diameter of 40-60 nm were used in subfractionation experiments. Immunoprecipitation of microsomal vesicles with anti-cytochrome b5 immunoglobulin failed to show any separation of the microsomes into fractions having different enzyme compositions. Cytochrome b5 was apparently distributed among all vesicles even when sonicated microsomes were used. When the antibody against NADPH-cytochrome c reductase was used, however, immunoadsorption of microsomes on Sepharose-bound antibody produced some separation of NADPH-cytochrome c reductase and cytochrome P-450 from NADH-cytochrome b5 reductase and cytochrome b5. The separation was more pronounced when sonicated microsomes were used. These results indicate microheterogeneity of the microsomal membrane, and suggest the clustering of NADPH-cytochrome c reductase and cytochrome P-450 molecules in the membrane.  相似文献   

6.
Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.  相似文献   

7.
Rabbit antibody was prepared against NADPH-cytochrome c reductase of Tetrahymena microsomes. When examined by the Ouchterlony double diffusion test, anti-NADPH-cytochrome c reductase immunoglobulin formed a single precipitation line with Tetrahymena reductase but not rat liver one. The antibody inhibited the NADPH-cytochrome c reductase activity of Tetrahymena microsomes, but it did not affect either NADH-ferricyanide or NADH-cytochrome c reductase activity of Tetrahymena microsomes. The NADPH-dependent desaturation of stearoyl-CoA in Tetrahymena microsomes was inhibited by anti-reductase immunoglobuline, while the NADH-dependent desaturation was affected by neither anti-reductase nor control immunoglobuline. It was suggested that the temperature associated-alteration of NADPH-cytochrome c reductase activities would be important for regulation of microsomal NADPH-dependent desaturase activities in Tetrahymena which contains no cytochrome P-450.  相似文献   

8.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

9.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

10.
Recent studies have shown that a cytochrome P-450 present in microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae is functional in the 14 alpha-demethylation of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol), but the occurrence of the same cytochrome P-450 in microsomes of aerobically grown yeast cells has not yet been reported. In this study, the microsomal fraction from aerobically grown cells was found to catalyze the lanosterol demethylation in the presence of NADPH and O2 and that this activity was sensitive to CO. In Ouchterlony double diffusion test, antibodies to the yeast cytochrome P-450 formed a single precipitin line with the microsomal fraction as well as with the purified yeast cytochrome P-450 and the two precipitin lines fused with each other. Furthermore, the antibodies inhibited the lanosterol demethylation activity of the microsomal fraction from aerobically grown cells. The quadratic-derivative absorption spectrum of the microsomal fraction measured in the presence of both Na2S2O4 and CO showed an absorption band at 450 nm which is attributable to the reduced CO compound of cytochrome P-450. These facts led to the conclusion that cytochrome P-450 actually exists in aerobically grown yeast and participates in the lanosterol 14 alpha-demethylation which is essential for the ergosterol (5 alpha-ergosta-5,7,22-trien-3 beta-ol) biogenesis by yeast.  相似文献   

11.
Propylthiouracil, a selective inhibitor of NADH-cytochrome b5 reductase   总被引:1,自引:0,他引:1  
E Lee  K Kariya 《FEBS letters》1986,209(1):49-51
Propylthiouracil inhibited the activity of NADH-cytochrome b5 reductase of rat liver microsomes using potassium ferricyanide as electron acceptor. On the other hand, NADPH-cytochrome P-450 reductase activity was not affected by the compound. NADH-supported reduction of cytochrome b5 was also inhibited by propylthiouracil in the reconstituted system consisting of cytochrome b5 and partially purified NADH-cytochrome b5 reductase.  相似文献   

12.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

13.
Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.  相似文献   

14.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

15.
A new method was employed for the purification of cytochrome P-450 from rat liver microsomes. The purified cytochrome was essentially free from possible contaminants and the recovery and degree of purification were high. Although 15% of the original P-450 was recovered through the purification procedure used, only 0.8% of the total original microsomal ethanol oxidation activity was associated with this fraction. Addition of this purified fraction to other fractions isolated did not further stimulate ethanol oxidation. The component of rat liver microsomes that was found most efficient in the oxidation of ethanol was the mixture of catalase and NADPH - cytochrome c - reductase. It is concluded that highly purified cytochrome P-450 by itself does not oxidize ethanol to any appreciable degree.  相似文献   

16.
Platelet microsomes were shown to contain cytochromes P-450 and b5 and their respective reductases, NADPH-cytochrome c reductase and NADH-cytochrome b5 reductase. Metyrapone and carbon monoxide (CO), two inhibitors of cytochrome P-450, inhibited both the arachidonic acid-induced platelet aggregation and the formation of aggregating factors from arachidonic acid by isolated microsomes. In addition metyrapone produced a type II spectral change with platelet microsomal cytochrome P-450. The data suggest that cytochrome P-450 may play a role in the complex enzyme systems which convert arachidonic acid to the platelet aggregating factors, cyclic endoperoxides and thromboxane A2.  相似文献   

17.
The effects of an oral administration of carbon tetrachloride on various liver microsomal and supernatant components were studied 1hr. and 2hr. after dosing. The modifications of such early changes resulting from a concomitant administration of promethazine together with the carbon tetrachloride were also investigated. The microsomal components studied were: cytochromes P-450 and b(5); inorganic pyrophosphatase; NADH- and NADPH-cytochrome c reductases; NADH- and NADPH-neotetrazolium reductases; a lipid-peroxidation system associated with the oxidation of NADPH and stimulated by ADP and Fe(2+). NAD- and NADP- DT-diaphorases were measured in the supernatant solution remaining after isolation of liver microsomes, and the distribution of RNA phosphorus between the microsomes and supernatant solution was also determined. Carbon tetrachloride produced a rapid fall in inorganic pyrophosphatase activity, a rather slower decrease in cytochrome P-450 content of the microsomes and small increases in the activities of NADH-cytochrome c reductase and neotetrazolium reductases. The activities of NADPH-cytochrome c reductase, the NADPH-ADP/Fe(2+)-linked lipid-peroxidation system, DT-diaphorases and the content of cytochrome b(5) in the microsomes were unchanged. There was also a loss of RNA phosphorus from the microsomes into the supernatant solution. The RNA phosphorus redistribution, the decrease in inorganic pyrophosphatase and the increases in neotetrazolium reductase activities were at least partially prevented by a concomitant dosing with promethazine. However, the decrease in cytochrome P-450 was not affected by promethazine treatment. These early changes are discussed in terms of the liver necrosis produced by carbon tetrachloride and which is greatly retarded in its onset by the administration of promethazine.  相似文献   

18.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

19.
Lauric acid in-chain hydroxylation is inhibited in microsomes from Jerusalem artichoke tubers (Helianthus tuberosus L.) incubated with 9-decenoic, 11-dodecenoic, or 11-dodecynoic acids. 9-Decenoic acid is at best a weak competitive inhibitor of the in-chain hydroxylase, but inactivates the enzyme in a time-dependent, pseudo-first-order process with a rate constant of approximately 1.1 X 10(-3) s-1. In contrast, 11-dodecenoic acid causes a slower, time-dependent loss of the hydroxylase activity, but is a potent competitive inhibitor of the enzyme (Ki = 2 microM). Neither agent decreases the microsomal concentration of cytochrome b5, NADH-cytochrome b5 reductase, or NADPH cytochrome P-450 reductase. Cinnamic acid 4-hydroxylation, catalyzed by a cytochrome P-450 enzyme, is not affected by concentrations of 9-decenoic acid that suppress lauric acid hydroxylation. 11-Dodecenoic acid is much less specific and, at higher concentrations, markedly reduces the microsomal cytochrome P-450 content, and the hydroxylation of both lauric and cinnamic acids.  相似文献   

20.
The dehydrogenation reaction of cholest-7-en-3beta-ol (I) to cholesta-5,7-dien-3beta-ol (II) in the presence of NADH was studied in rat liver microsomes and in microsomal acetone powder preparations, using [3alpha-3H]cholest-7-en-3beta-ol. It was found that the reaction was inhibited by menadione, adenosine diphosphate, potassium ferricyanide, and cytochrome c while p-cresol had no effect. These results indicated the participation of a microsomal electron transport system in the dehydrogenation of cholest-7-en-3beta-ol. The conversion of cholest-7-en-3beta-ol to cholesta-5,7-dien-3beta-ol was also observed in the absence of NADH when ascorbic acid was included in the incubation mixture. However, the ascorbic acid-catalyzed dehydrogenation was not inhibited by potassium ferricyanide. Immunological evidence that microsomal cytochrome b5 is involved in the dehydrogenation of (I) to (II) was obtained. Antibodies specific for rat liver microsomal cytochrome b5 were elicited in rabbits. The anticytochrome b5 immunoglobulin fraction inhibited rat liver microsomal NADH-cytochrome c reductase but not NADPH-cytochrome c reductase. Also, the extent of reduction of cytochrome b5 was not affected by the antibodies. The conversion of (I) to (II) by rat liver microsomes was inhibited (73%) by anticytochrome b5 immunoglobulin at a ratio of microsomal protein:immunoglobulin of 1:5.6. These results are consistent with the participation of microsomal cytochrome b5 in the introduction of the C-5 double bond in cholesterol biosynthesis. A close analogy of the microsomal dehydrogenation of fatty acids and of cholest-7-en-3beta-ol is apparent and this suggests a possible similarity in the mechanisms of the two reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号