首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

2.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

3.
This research utilized tower‐based eddy covariance to quantify the trends in net ecosystem mass (CO2 and H2O vapor) and energy exchange of important land‐cover types of NW Mato Grosso during the March–December 2002 seasonal transition. Measurements were made in a mature transitional (ecotonal) tropical forest near Sinop, Mato Grosso, and a cattle pasture near Cotriguaçú, Mato Grosso, located 500 km WNW of Sinop. Pasture net ecosystem CO2 exchange (NEE) was considerably more variable than the forest NEE over the seasonal transition, and the pasture had significantly higher rates of maximum gross primary production in every season except the dry–wet season transition (September–October). The pasture also had significantly higher rates of whole‐ecosystem dark respiration than the forest during the wetter times of the year. Average (±95% CI) rates of total daily NEE during the March–December 2002 measurement period were 26±15 mmol m?2 day?1 for the forest (positive values indicate net CO2 loss by the ecosystem) and ?38±26 mmol m?2 day?1 for the pasture. While both ecosystems partitioned more net radiation (Rn) into latent heat flux (Le), the forest had significantly higher rates of Le and lower rates of sensible heat flux (H) than the pasture; a trend that became more extreme during the onset of the dry season. Large differences in pasture and forest mass and energy exchange occurred even though seasonal variations in micrometeorology (air temperature, humidity, and radiation) were relatively similar for both ecosystems. While the short measurement period and lack of spatial replication limit the ability to generalize these results to pasture and forest regions of the Amazon Basin, these results suggest important differences in the magnitude and seasonal variation of NEE and energy partitioning for pasture and transitional tropical forest.  相似文献   

4.
Conversion of large areas of agricultural grassland is inevitable if European and UK domestic production of biomass is to play a significant role in meeting demand. Understanding the impact of these land‐use changes on soil carbon cycling and stocks depends on accurate predictions from well‐parameterized models. Key considerations are cultivation disturbance and the effect of autotrophic root input stimulation on soil carbon decomposition under novel biomass crops. This study presents partitioned parameters from the conversion of semi‐improved grassland to Miscanthus bioenergy production and compares the contribution of autotrophic and heterotrophic respiration to overall ecosystem respiration of CO2 in the first and second years of establishment. Repeated measures of respiration from within and without root exclusion collars were used to produce time‐series model integrations separating live root inputs from decomposition of grass residues ploughed in with cultivation of the new crop. These parameters were then compared to total ecosystem respiration derived from eddy covariance sensors. Average soil surface respiration was 13.4% higher in the second growing season, increasing from 2.9 to 3.29 g CO2‐C m?2 day?1. Total ecosystem respiration followed a similar trend, increasing from 4.07 to 5.4 g CO2‐C m?2 day?1. Heterotrophic respiration from the root exclusion collars was 32.2% lower in the second growing season at 1.20 g CO2‐C m?2 day?1 compared to the previous year at 1.77 g CO2‐C m?2 day?1. Of the total respiration flux over the two‐year time period, aboveground autotrophic respiration plus litter decomposition contributed 38.46% to total ecosystem respiration while belowground autotrophic respiration and stimulation by live root inputs contributed 46.44% to soil surface respiration. This figure is notably higher than mean figures for nonforest soils derived from the literature and demonstrates the importance of crop‐specific parameterization of respiration models.  相似文献   

5.
Quantification of rhizodeposition (root exudates and root turnover) represents a major challenge for understanding the links between above‐ground assimilation and below‐ground anoxic decomposition of organic carbon in rice paddy ecosystems. Free‐air CO2 enrichment (FACE) fumigating depleted 13CO2 in rice paddy resulted in a smaller 13C/12C ratio in plant‐assimilated carbon, providing a unique measure by which we partitioned the sources of decomposed gases (CO2 and CH4) into current‐season photosynthates (new C) and soil organic matter (old C). In addition, we imposed a soil‐warming treatment nested within the CO2 treatments to assess whether the carbon source was sensitive to warming. Compared with the ambient CO2 treatment, the FACE treatment decreased the 13C/12C ratio not only in the rice‐plant carbon but also in the soil CO2 and CH4. The estimated new C contribution to dissolved CO2 was minor (ca. 20%) at the tillering stage, increased with rice growth and was about 50% from the panicle‐formation stage onwards. For CH4, the contribution of new C was greater than for heterotrophic CO2 production; ca. 40–60% of season‐total CH4 production originated from new C with a tendency toward even larger new C contribution with soil warming, presumably because enhanced root decay provided substrates for greater CH4 production. The results suggest a fast and close coupling between photosynthesis and anoxic decomposition in soil, and further indicate a positive feedback of global warming by enhanced CH4 emission through greater rhizodeposition.  相似文献   

6.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

7.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

8.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

9.
Northern terrestrial ecosystems have shown global warming‐induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and 13C/12C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and 13C/12C seasonality. Since the 1960s, the only significant long‐term trend of CO2 and 13C/12C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr?1, contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr?1). For Point Barrow station, vegetation phenology changes in well‐watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13C/12C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13C depleted plant materials cancels out the 12C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming‐induced increases both in photosynthesis and respiration contribute to the long‐term stability of CO2 and 13C/12C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak‐to‐through CO2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems.  相似文献   

10.
The impact of changes in winter soil frost regime on soil CO2 concentration and its atmospheric exchange in a boreal Norway spruce forest was investigated using a field‐scale soil frost manipulation experiment. The experiment comprised three treatments: deep soil frost, shallow soil frost and control plots (n= 3). Winter soil temperatures and soil frost distribution were significantly altered by the different treatments. The average soil CO2 concentrations during the growing season were significantly lower in plots with deep soil frost than in plots with shallow soil frost. The average CO2 soil–atmosphere exchange rate exhibited the same pattern, and differences in soil respiration rates among the treatments were statistically significant. Both the variation in soil CO2 concentration and the CO2 soil–atmosphere exchange rate could statistically be explained by the differences in the maximum soil frost depth during the previous winter. A response model for growing season soil respiration rates suggests that every 1 cm change in winter soil frost depth will change the emission rates by ca. 0.01 g CO2 m?2 day?1, corresponding to 0.2–0.5% of the estimated net ecosystem productivity (NEP). This suggests that the soil frost regime has a significant influence on the C balance of the system, because interannual variations in soil frost up to 60 cm have been recorded at the site. We conclude that winter climate conditions can be important in controlling C balances in northern terrestrial ecosystems, and also that indirect effects of the winter season must be taken into account, because these can affect the prevailing conditions during the growing season.  相似文献   

11.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

12.
In the Orinoco lowlands, savannas have been often replaced by pastures composed of the C4 grass, Brachiaria decumbens Stapf. We addressed following questions: (1) How does the replacement of the native vegetation affect CO2 exchange on seasonal and annual scales? (2) How do biophysical constraints change when the landscape is transformed? To assess how these changes affect carbon exchange, we determined simultaneously the CO2 fluxes by eddy covariance, and the soil CO2 efflux by a chamber-based system in B. decumbens and herbaceous savanna stands. Measurements covered a one-year period from the beginning of the dry season (November 2008) to the end of the wet season (November 2009). During the wet season, the net ecosystem CO2 exchange reached maximum values of 23 and 10 μmol(CO2) m?2 s?1 in the B. decumbens field and in the herbaceous savanna stand, respectively. The soil CO2 efflux for both stands followed a temperature variation during the dry and wet seasons, when the soil water content (SWC) increased above 0.087 m3 m?3 in the latter case. Bursts of CO2 emissions were evident when the dry soil experienced rehydration. The carbon source/sink dynamics over the two canopies differed markedly. Annual measurements of the net ecosystem production indicated that the B. decumbens field constituted a strong carbon sink of 216 g(C) m?2 y?1. By contrast, the herbaceous savanna stand was found to be only a weak sink [36 g(C) m?2 y?1]. About 53% of the gross primary production was lost as the ecosystem respiration. Carbon uptake was limited by SWC in the herbaceous savanna stand as evident from the pattern of water-use efficiency (WUE). At the B. decumbens stand, WUE was relatively insensitive to SWC. Although these results were specific to the studied site, the effect of land use changes and the physiological response of the studied stands might be applicable to other savannas.  相似文献   

13.
Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present results of in situ CH4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open‐top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH4‐C m?2 (8.1 ± 1.2 g CO2‐eq m?2) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH4‐C m?2 (3.9 ± 0.6 g CO2‐eq m?2). These uptake rates were subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4‐C m?2 (3.7 ± 1.2 g CO2‐eq m?2). The result was a net landscape sink of 12.71 kg CH4‐C (0.48 tonne CO2‐eq) during the growing season. A nonsignificant trend was noticed in seasonal CH4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH4 fluxes. Overall, the net landscape sink of CH4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH4 budget of the Arctic due to their potential role in counterbalancing CH4 emissions from wetlands – not the least when taking the future climatic scenarios of the Arctic into account.  相似文献   

14.
Aim Savannas and seasonally‐dry ecosystems cover a significant part of the world's land surface. If undisturbed, these ecosystems might be expected to show a net uptake of methane (CH4) and a limited emission of nitrous oxide (N2O). Land management has the potential to change dramatically the characteristics and gas exchange of ecosystems. The present work investigates the contribution of warm climate seasonally‐dry ecosystems to the atmospheric concentration of nitrous oxide and methane, and analyses the impact of land‐use change on N2O and CH4 fluxes from the ecosystems in question. Location Flux data reviewed here were collected from the literature; they come from savannas and seasonally‐dry ecosystems in warm climatic regions, including South America, India, Australasia and Mediterranean areas. Methods Data on gas fluxes were collected from the literature. Two factors were considered as determinants of the variation in gas fluxes: land management and season. Land management was grouped into: (1) control, (2) ‘burned only’ and (3) managed ecosystems. The season was categorized as dry or wet. In order to avoid the possibility that the influence of soil properties on gas fluxes might confound any differences caused by land management, sites were grouped in homogeneous clusters on the basis of soil properties, using multivariate analyses. Inter‐ and intra‐cluster analysis of gas fluxes were performed, taking into account the effects of season, land management and main vegetation types. Results Soils were often acid and nutrient‐poor, with low water retention. N2O emissions were generally very low (median flux 0.32 mg N2O m?2 day?1), and no significant differences were observed between woodland savannas and managed savannas. The highest fluxes (up to 12.9 mg N2O m?2 day?1) were those on relatively fertile soils with high air‐filled porosity and water retention. The effect of season on N2O production was evident only when sites were separated in homogeneous groups on the basis of soil properties. CH4 fluxes varied over a wide range (?22.9 to 3.15 mg CH4 m?2 day?1, where the negative sign denotes removal of gas from the atmosphere), with an annual average daily flux of ?0.48 ± 0.96 (SD) mg CH4 m?2 day?1 in undisturbed (control) sites. Land‐use change dramatically reduced this CH4 sink. Managed sites were weak sinks of CH4 in the dry season and became sources of CH4 in the wet season. This was particularly evident for pastures. Burning alone did not reduce soil net CH4 oxidation, but decreased N2O production. Main conclusions Despite the low potential for N2O production, both in natural and managed conditions, tropical seasonally‐dry ecosystems represent a significant source of N2O (4.4 Tg N2O year?1) on a global scale, as a consequence of the large area they occupy. The same environments represent a potential CH4 sink of 5.17 Tg CH4 year?1. However, assuming that c. 30% of the tropical land is converted to different uses, the sink would be reduced to 3.2 Tg CH4 year?1. The limited information on fluxes from Mediterranean ecosystems does not allow a meaningful scaling up.  相似文献   

15.
Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We investigated how a decade of experimental N addition (125 kg N ha?1 year?1) to a seasonal lowland forest affected depth distribution and contents of soil nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), as well as natural abundance isotopic signatures of N2O, nitrate (NO3 ?) and ammonium (NH4 +). In the control plots during dry season, we deduced limited N2O production by denitrification in the topsoil (0.05–0.40 m) as indicated by: ambient N2O concentrations and ambient 15N-N2O signatures, low water-filled pore space (35–60%), and similar 15N signatures of N2O and NO3 ?. In the subsoil (0.40–2.00 m), we detected evidence of N2O reduction to N2 during upward diffusion, indicating denitrification activity. During wet season, we found that N2O at 0.05–2.00 m was mainly produced by denitrification with substantial further reduction to N2, as indicated by: lighter 15N-N2O than 15N-NO3 ? throughout the profile, and increasing N2O concentrations with simultaneously decreasing 15N-N2O enrichment with depth. These interpretations were supported by an isotopomer map and by a positive correlation between 18O-N2O and 15N-N2O site preferences. Long-term N addition did not affect dry-season soil N2O-N contents, doubled wet-season soil N2O-N contents, did not affect 15N signatures of NO3 ?, and reduced wet-season 15N signatures of N2O compared to the control plots. These suggest that the increased NO3 ? concentrations have stimulated N2O production and decreased N2O-to-N2 reduction. Soil CO2-C contents did not differ between treatments, implying that N addition essentially did not influence soil C cycling. The pronounced seasonality in soil respiration was largely attributable to enhanced topsoil respiration as indicated by a wet-season increase in the topsoil CO2-C contents. The N-addition plots showed reduced dry-season soil CH4-C contents and threshold CH4 concentrations were reached at a shallower depth compared to the control plots, revealing an N-induced stimulation of methanotrophic activity. However, the net soil CH4 uptake rates remained similar between treatments possibly because diffusive CH4 supply from the atmosphere largely limited CH4 oxidation.  相似文献   

16.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

17.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

18.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

19.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

20.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号