首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dissolved oxygen regulates microbial distribution and nitrogen cycling and, therefore, ocean productivity and Earth's climate. To date, the assembly of microbial communities in relation to oceanographic changes due to El Niño Southern Oscillation (ENSO) remains poorly understood in oxygen minimum zones (OMZ). The Mexican Pacific upwelling system supports high productivity and a permanent OMZ. Here, the spatiotemporal distribution of the prokaryotic community and nitrogen-cycling genes was investigated along a repeated transect subjected to varying oceanographic conditions associated with La Niña in 2018 and El Niño in 2019. The community was more diverse during La Niña and in the aphotic OMZ, dominated by the Subtropical Subsurface water mass, where the highest abundances of nitrogen-cycling genes were found. The largest proportion of the Gulf of California water mass during El Niño provided warmer, more oxygenated, and nutrient-poor waters towards the coast, leading to a significant increase of Synechococcus in the euphotic layer compared with the opposite conditions during La Niña. These findings suggest that prokaryotic assemblages and nitrogen genes are linked to local physicochemical conditions (e.g. light, oxygen, nutrients), but also to oceanographic fluctuations associated with ENSO phases, indicating the crucial role of climate variability in microbial community dynamics in this OMZ.  相似文献   

2.
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest’s upper limit and composition in Hawai‘i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest’s upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture’s overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.  相似文献   

3.
There is a limited knowledge about the El Niño–Southern Oscillation (ENSO) effects on the Amazon basin, the world's largest tropical rain forest and a major factor in the global carbon cycle. Seasonal precipitation in the Andean watershed annually causes a several month‐long inundation of the floodplains along the Amazon River that induces the formation of annual rings in trees of the flooded forests. Radial growth of trees is mainly restricted to the nonflooded period and thus the ring width corresponds to its duration. This allows the construction of a tree‐ring chronology of the long‐living hardwood species Piranhea trifoliata Baill. (Euphorbiaceae). El Niño causes anomalously low precipitation in the catchment that results in a significantly lower water discharge of the Amazon River and consequently in an extension of the vegetation period. In those years tree rings are significantly wider. Thus the tree‐ring record can be considered as a robust indicator reflecting the mean climate conditions of the whole Western Amazon basin. We present a more than 200‐year long chronology, which is the first ENSO‐sensitive dendroclimatic proxy of the Amazon basin and permits the dating of preinstrumental El Niño events. Time series analyses of our data indicate that during the last two centuries the severity of El Niño increased significantly.  相似文献   

4.
In Peru, it was hypothesized that epidemic cholera in 1991 was linked to El Niño, the warm phase of El Niño–Southern Oscillation. While previous studies demonstrated an association in 1997–1998, using cross-sectional data, they did not assess the consistency of this relationship across the decade. Thus, how strong or variable an El Niño–cholera relationship was in Peru or whether El Niño triggered epidemic cholera early in the decade remains unknown. In this study, wavelet and mediation analyses were used to characterize temporal patterns among El Niño, local climate variables (rainfall, river discharge, and air temperature), and cholera incidence in Piura, Peru from 1991 to 2001 and to estimate the mediating effects of local climate on El Niño–cholera relationships. The study hypothesis is that El Niño-related connections with cholera in Piura were transient and interconnected via local climate pathways. Overall, our findings provide evidence that a strong El Niño–cholera link, mediated by local hydrology, existed in the latter part of the 1990s but found no evidence of an El Niño association in the earlier part of the decade, suggesting that El Niño may not have precipitated cholera emergence in Piura. Further examinations of cholera epicenters in Peru are recommended to support these results in Piura. For public health planning, the results may improve existing efforts that utilize El Niño monitoring for preparedness during future climate-related extremes in the region.  相似文献   

5.
We studied spatial variability in giant kelp (Macrocystis pyrifera) forests at 84 sites along the west coast of North America in order to assess the impacts of the 1997–98 El Niño. Our sites spanned the geographic range of giant kelp in the Northern Hemisphere and were surveyed just before, immediately following, several months after, more than one year after, and nearly two years after the El Niño. Interspersion of sample units allowed us to compare the effects of this disturbance among spatial scales ranging from a few meters to more than a thousand kilometers. Variance components analyses revealed that El Niño shifted the relative importance of factors that regulate giant kelp communities from factors acting at the scale of a few meters (local control) to factors operating at hundreds of kilometers (regional control). Moreover, El Niño resulted in a near‐to‐complete loss of giant kelp populations throughout nearly two‐thirds of the species' range. Evaluation of these effects along with oceanographic data (at the “appropriate” spatial scales), along with closer examination of giant kelp populations in the most severely impacted region (Baja) suggested that the among‐region differences in giant kelp survival was due, at least in part, to El Niño‐induced differences in ocean climate. Giant kelp recovery following El Niño was also scale‐dependent, but driven by factors different from those of the disturbance. Here, we present results for several species of macroalgae in an attempt to relate the importance of El Niño to that of other processes in creating scale‐dependent patterns of variability.  相似文献   

6.
We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient‐enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage‐channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.  相似文献   

7.
Vegetation productivity and desertification in sub‐Saharan Africa may be influenced by global climate variability attributable to the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO). Combined and individual effects of the NAO and ENSO indices revealed that 75% of the interannual variation in the area of Sahara Desert was accounted for by the combined effects, with most variance attributable to the NAO. Effects were shown in the latitudinal variation on the 200 mm isocline, which was influenced mostly by the NAO. The combined indices explained much of the interannual variability in vegetation productivity in the Sahelian zone and southern Africa, implying that both the NAO and ENSO may be useful for monitoring effects of global climate change in sub‐Saharan Africa.  相似文献   

8.
Tree-ring research in the highland tropics and subtropics represents a major frontier for understanding climate-growth relationships. Nonetheless, there are many lowland regions – including the South American Pampa biome – with scarce tree ring data. We present the first two tree-ring chronologies for Scutia buxifolia in subtropical Southeastern South America (SESA), using 54 series from 29 trees in two sites in northern and southern Uruguay. We cross-dated annual rings and compared tree growth from 1950 to 2012 with regional climate variability, including rainfall, temperature and the Palmer Drought Severity Index – PDSI, the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Overall, ring width variability was highly responsive to climate signals linked to water availability. For example, tree growth was positively correlated with accumulated rainfall in the summer-fall prior to ring formation for both chronologies. Summer climate conditions were key for tree growth, as shown by a negative effect of hot summer temperatures and a positive correlation with PDSI in late austral summer. The El Niño phase in late spring/early summer favored an increase in rainfall and annual tree growth, while the La Niña phase was associated with less rainfall and reduced tree growth. Extratropical climate factors such as SAM had an equally relevant effect on tree growth, whereby the positive phase of SAM had a negative effect over radial growth. These findings demonstrate the potential for dendroclimatic research and climate reconstruction in a region with scarce tree-ring data. They also improve the understanding of how climate variability may affect woody growth in native forests – an extremely limited ecosystem in the Pampa biome.  相似文献   

9.
Influence of precipitation seasonality on piñon pine cellulose δD values   总被引:1,自引:0,他引:1  
The influence of seasonal to interannual climate variations on cellulose hydrogen isotopic composition (δD) was assessed by analysing tree rings and needles of piñon pine (Pinus edulis and P. monophylla). Sites spanned a gradient of decreasing summer precipitation, from New Mexico to Arizona to Nevada. Tree rings were divided into earlywood, latewood and whole‐year increments, and annual cohorts of needles were collected. The study period (1989–96) included two La Niña events (1989, 1996) and a prolonged El Niño event (1991–95). Winter and spring moisture conditions were strongly related to October–March Southern Oscillation Index (SOI) in New Mexico and Arizona, with above‐average precipitation occurring in El Niño years. Wood δD values at these sites were correlated with winter and spring moisture conditions. Needle δD values were correlated with summer moisture conditions in New Mexico and with winter moisture and SOI in Arizona. Low cellulose δD values observed from 1991 to 1993 in both wood and needles occurred during wet El Niño years, whereas high δD values in needles were present during the dry, La Niña years of 1989 and 1996. North‐eastern Nevada does not receive precipitation anomalies related to ENSO, and thus cellulose δD values did not reflect the ENSO pattern observed at the other sites. Cellulose δD values were strongly, inversely correlated with relative humidity variations at all sites, as predicted by a mechanistic model. Contrary to predictions from the same model and observations from more mesic areas, time series of cellulose δD values were not directly correlated with interannual or seasonal variations in precipitation δD values or temperature at any of the sites. On a regional basis, however, mean δD values in needles and wood were correlated with mean annual temperature and δD values of precipitation. This suggests that temporal averaging may bias relationships between biological systems and climate.  相似文献   

10.
We censused butterflies flying across the Panama Canal at Barro Colorado Island (BCI) for 16 years and butterfly hostplants for 8 years to address the question: What environmental factors influence the timing and magnitude of migrating Aphrissa statira butterflies? The peak migration date was earlier when the wet season began earlier and when soil moisture content in the dry season preceding the migration was higher. The peak migration date was also positively associated with peak leaf flushing of one hostplant (Callichlamys latifolia) but not another (Xylophragma seemannianum). The quantity of migrants was correlated with the El Niño Southern Oscillation, which influenced April soil moisture on BCI and total rainfall in the dry season. Both hostplant species responded to El Niño with greater leaf flushing, and the number of adults deriving from or laying eggs on those new leaves was greatest during El Niño years. The year 1993 was exceptional in that the number of butterflies migrating was lower than predicted by the El Niño event, yet the dry season was unusually wet for an El Niño year as well. Thus, dry season rainfall appears to be a primary driver of larval food production and population outbreaks for A. statira. Understanding how global climate cycles and local weather influence tropical insect migrations improves the predictability of ecological effects of climate change.  相似文献   

11.
Abstract

El Niño and La Niña climate perturbations alter sea currents and food availability for seabirds in many areas of the world. This changes their breeding success and mortality. Blue penguin (Eudyptula minor) breeding success is dependent upon whether one or two clutches per season are laid, and the hatching and fledging success of these clutches. This study uses six years of data from five blue penguin breeding colonies, three from Taiaroa Head, Otago Peninsula and two from Oamaru, to examine whether annual variation in breeding success correlates with El Niño/La Niña perturbations. When La Niña conditions prevailed, penguins started breeding later, and there was a lower proportion of double breeders than in El Niño and normal years. The probability of a newly hatched chick surviving to fledging was also dependent on whether large‐scale climatic conditions prevailed, whereas hatching success and overall breeding success (number of fledged chicks per breeding pair) showed no correlation with climate perturbations.  相似文献   

12.
As El Niño is predicted to become stronger and more frequent in the future, it is crucial to understand how El Niño-induced droughts will affect tropical forests. Although many studies have focused on tropical rainforests, there is a paucity of studies on seasonally dry tropical forests (SDTFs), particularly in Asia, and few studies have focused on seedling dynamics, which are expected to be strongly affected by drought. Seedlings in SDTFs are generally more drought-tolerant than those in the rainforests, and the effects of El Niño-induced droughts may differ between SDTF and tropical rainforests. In this study, we explored the impact of El Niño-induced drought at an SDTF in northern Thailand by monitoring the seedling dynamics at monthly intervals for 7 years, including a period of strong El Niño. The effects were compared between two forest types in an SDTF: a deciduous dipterocarp forest (DDF), dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. El Niño-induced drought increased seedling mortality in both the forest types. The effect of drought was stronger in evergreen than in the deciduous species, resulting in higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which compensated for the mortality of seedlings in the DDF. As a result, El Niño increased seedling density in the DDF and decreased it in the LMF. This is the first long-term study to identify the differences in the impacts of El Niño on seedlings between the two forest types, and two leaf habits, evergreen and deciduous, in Southeast Asia. Our findings suggest that future climate change may alter the species composition and spatial distribution of seedlings in Asian SDTFs.  相似文献   

13.
One of the major uncertainties of 21st century climate change is the potential for shifts to the intensity and frequency of the El Niño Southern Oscillation (ENSO) cycle. Although this phenomenon is known to have dramatic impacts on ecosystems regionally and globally, the biological consequences of climate change‐driven shifts in future ENSO events have been unexplored. Here, we investigate the potential impacts that a persistent El Niño, La Niña, or ‘Neutral' phase may have on species distributions. Using MaxEnt, we model the distribution of climatically suitable habitat for three northeast Australian butterfly subspecies (Doleschallia bisaltide australis, Hypolimnas alimena lamina, and Mycalesis terminus terminus) across the three ENSO phases. We find that the spatial extent and quality of habitat are lowest under conditions that would characterize a persistent El Niño (hot/dry). In contrast, suitable habitat is broadest under the warm/wet conditions associated with La Niña. Statistical analyses of the difference between pair‐wise combinations of suitability maps using Hellinger distance showed that projections for each subspecies and ENSO phase combination were significantly different from other combinations. The resilience of these, and other, butterfly (sub)species to changes in ENSO will be influenced by fluctuations in the strength of these events, availability of refugia, and life‐history characteristics. However, the population dynamics of wet‐ and dry‐season phenotypes of M. t. terminus and physiological limitations to high temperatures suggest that this subspecies, in particular, may have limited resilience should the strength and frequency of El Niño events increase.  相似文献   

14.
Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.  相似文献   

15.
Annual 4th of July Butterfly Count data spanning more than 20 years are examined to explore Vanessa cardui (Painted Lady) population fluctuations with ENSO (El Niño) and Pacific Decadal Oscillation (PDO) indices. California, Colorado and Nebraska censuses exhibit a strong positive correlation with the strong El Niño events of 1982–1983 and 1997–1998 and the weaker event of 1991–1992. Regression analysis shows the population fluctuations are strongly coupled to climate variations on both short (El Niño) and longer (Pacific Decadal Oscillation) time scales. Recognizing the sensitivity to these time scales is important for predicting longer‐term global climate change effects.  相似文献   

16.
Benthic Foraminifera were assessed in Rose Bengal-stained sediment samples collected annually from 1995 to 2011 at four shallow bank reefs in Northern Bahia (Brazil). The assemblage was represented by 284 species and 88 genera, the most diverse genera being Quinqueloculina (46 spp.), Triloculina (24 spp.), Articulina (13 spp.), Textularia (11 spp.), and Elphidium (10 spp.). Significant differences in densities of live foraminifers in the sediments were observed among years, though not between reefs. Mean densities and diversities declined by ∼90% during the 1997–8 El Niño event compared with the two previous years, then rebounded during the strong La Niña years of 1999–2000, with rapid recovery of populations of small, heterotrophic foraminifers in the assemblage. After 2000, mean densities and diversities fluctuated, with lows following both the 2006–7 and 2009–10 weak El Niño events, but not so pronounced as during the 1997–8 event. Multivariate analysis clearly formed four separate groupings representing strong (hot, dry) and weak El Niño (dry) years, “normal” years, and strong La Niña (high rainfall) years. The FoRAM Index (FI), which is a single-metric index for water quality associated with reef accretion, provided additional insights into assemblage responses. The FI compares relative abundances of three functional groups of benthic foraminifers: characteristic reef-dwelling larger foraminifers that host algal endosymbionts, the ubiquitous heterotrophic smaller taxa, and specifically stress-tolerant heterotrophic taxa. The striking decline in overall densities during El Niño years likely reflects reduced food supply for the heterotrophic taxa, associated with higher temperatures and reduced runoff. Decline in the taxa that host algal symbionts is consistent with reports of extensive coral bleaching, likely related to photo-oxidative stress caused by higher temperatures and increased water transparency. The significant changes in assemblage structure and composition recorded during this 17-year study demonstrate the major influence of climatic variability associated with the El Niño/La Niña-Southern Oscillation.  相似文献   

17.
《Global Change Biology》2018,24(5):1894-1903
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño‐Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events.  相似文献   

18.
Recent strong El Niño‐Southern Oscillation (ENSO) signals have been identified in precipitation records from the Iberian Peninsula. Interannual association with ENSO accounts for more than half the total annual variance in selected stations of the south‐east, with ENSO leading rainfall by one year. In contrast, association with the North Atlantic Oscillation (NAO) at the Westernmost stations is much lower (25%). The potential of simple linear models is tested in the ENSO‐sensitive area, suggesting high capability of the Southern Oscillation Index (SOI) for predicting interannual rainfall fluctuations (mainly droughts and floods). Wine quality is associated with several factors, e.g. grape variety, soil type and processing, which can be considered invariable, mainly due to the strict regulations imposed by the quality regulating councils. Climate, however, has a great influence on resulting wine quality, and represents the most important source of variability at both short (day‐to‐day) and long (interannual) time scales. Over the last 30 years, high‐quality harvests in the five main wine regions in Spain, show a high probability (P < 0.0002) of being associated with an El Niño event occurring the same year or the year before. NAO influence is not significant during the same period. Thus, apart from considering the role of local climatic conditions in certain regions, which favour the production of excellent wines, larger‐scale climatic phenomena appear responsible for the year‐to‐year variations in quality.  相似文献   

19.
In the wet forests of Panama, El Niño typically brings a more prolonged and severe dry season. Interestingly, many trees and lianas that comprise the wet forests increase their productivity as a response to El Niño. Here, we quantify the abundance of migrating Marpesia chiron butterflies over 17 yr and the production of new leaves of their hostplants over 9 yr to test the generality of the El Niño migration syndrome, i.e., whether increased abundance of migrating insects and productivity of their food plants are associated with El Niño and La Niña events. We find that the quantity of M. chiron migrating across the Panama Canal was directly proportional to the sea surface temperature (SST) anomaly of the Pacific Ocean, which characterizes El Niño and La Niña events. We also find that production of new leaves by its larval host trees, namely Brosimum alicastrum, Artocarpus altilis, and Ficus citrifolia, was directly proportional to the SST anomaly, with greater leaf flushing occurring during the period of the annual butterfly migration that followed an El Niño event. Combining these and our previously published results for the migratory butterfly Aphrissa statira and its host lianas, we conclude that dry season rainfall and photosynthetically active radiation can serve as primary drivers of larval food production and insect population outbreaks in Neotropical wet forests, with drier years resulting in enhanced plant productivity and herbivore abundance. Insect populations should closely track changes in both frequency and amplitude of the El Niño Southern Oscillation with climate change.  相似文献   

20.
Samples from the southern California sector of the California Current System were examined to test for interannual changes in winter–spring abundance of the planktonic copepod, Calanus pacificus, coincident with the 1992–93 and 1958–59 El Niños, each evaluated relative to immediately preceding years, and for interdecadal change (the early 1990s relative to the late 1950s). Calanus was anomalously rare in both of the El Niño periods, as was macrozooplankton, but (unlike macrozooplanktonic biomass) was not rarer in the early 1990s than in the late 1950s. The El Niño anomalies in Calanus’s abundance and macrozooplanktonic biomass were not spatially correlated on the mesoscale, implying that different proximate ecological causes may dominate at this scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号