首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: We have developed a direct viable count (DVC)‐FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. Methods and Results: direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA‐gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC‐FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. Conclusions: This technique was successfully applied to detect viable cells in inoculated faeces. Significance and Impact of the Study: Results showed that this DVC‐FISH procedure is a quick and culture‐independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria.  相似文献   

2.
Aims: The yeast Saccharomyces boulardii is used as a probiotic for the prevention and treatment of diarrhoea. In this study, the quality of 15 probiotic products containing S. boulardii was verified. Methods and Results: Using microsatellite typing, the identity of all Saccharomyces strains in the products was confirmed as S. boulardii. Additionally, solid‐phase cytometry (SPC) and a plate method were used to enumerate S. boulardii cells. SPC was not only able to produce results more rapidly than plating (4 h compared to 48 h) but the cell counts obtained with SPC were significantly higher than the plate counts. Finally, we found that <1% of the S. boulardii cells survived 120 min in gastric conditions and storage for 3 months at 40°C with 75% relative humidity. Conclusions: We developed a SPC method for the quantification of viable S. boulardii cells in probiotics. Additionally, we demonstrated that gastric conditions and storage have a marked effect on the viability of the yeast cells. Significance and Impact of the Study: To our knowledge, this is the first time SPC is used for the quality control of probiotics with S. boulardii. Additionally, we demonstrated the need for gastric protection and accurate storage.  相似文献   

3.
Propidium monoazide is a DNA‐intercalating dye. PMA‐qPCR has been reported as a novel method to detect live bacteria in complex samples. In this study, this method was used to monitor the sterilization effects of UHP, ultrasound and high PEF on Escherichia coli O157:H7. Our results showed that all three sterilization techniques are successful to kill viable E. coli O157:H7 cells under their appropriate conditions. PMA‐qPCR can effectively monitor the amount of DNA released from viable E. coli O157:H7 cells, and the results from PMA‐qPCR were highly consistent with those from plate counting after treatment with UHP, ultrasound and high PEF. The maximal ΔCt between PMA‐qPCR and qPCR obtained in this study was 10·39 for UHP, 5·76 for ultrasound and 2·30 for high PEF. The maximal sterilization rates monitored by PMA‐qPCR were 99·92% for UHP, 99·99% for ultrasound and 100% for high PEF. Thus, PMA‐qPCR can be used to detect the sterilization effect on food and water supplies after treatment with UHP, ultrasound and high PEF.

Significance and Impact of the Study

The reliable detection of viable foodborne pathogenic bacteria in water and food is of great importance in our daily life. However, the traditional bacteria cultivation‐based methods are time‐consuming and difficult to monitor all viable bacteria because of the limitation of cultivation conditions. This study demonstrated that PMA‐qPCR technique is very effective to monitor viable E. coli O157:H7 after sterilization and will help to monitor the viable bacteria in food and water.  相似文献   

4.
5.
Bacterial immobilization by metal hydroxides can be used for enrichment of various bacterial strains including Gram (+) and Gram (−). The polymerase chain reaction (PCR)-based bacterial detection without enrichment culture could be implemented by concentrating bacteria from food matrix by metal hydroxides. To distinguish between viable and non-viable cells, it is often required to detect the mRNA, an indicator of viable cells. This technique, although provides accurate and reliable result, is expensive and time-consuming. Here, we report the studies on application of DNase I treatment to eliminate DNA from dead cells and subsequently detect the presence of viable pathogens by conventional PCR. It was found that treatment of immobilized cells with DNase I for 1 h at 37°C prior to DNA extraction could efficiently eliminate false positives due to the presence of non-viable cells. The technique was used to detect the presence of various pathogens in food model. The detection limits for Escherichia coli O157:H7 (384 bp), Listeria monocytogenes (482 bp), and E. coli wild type (580 bp) was 5 × 101 cells and that for Salmonella typhimurium (685 bp) was 5 × 102 cells in 10 ml of whole milk. An erratum to this article can be found at  相似文献   

6.
《Luminescence》2004,19(4):193-198
A chemiluminescence‐based assay is developed for the rapid detection of Escherichia coli in fresh produce. The assay was based on the reaction of β‐galactosidase enzyme from E. coli with a phenylgalactosidase‐substituted dioxetane substrate. Light emitted from the reaction was measured in a luminometer and data correlated with counts of E. coli enumerated on sorbitol–MacConkey agar plates. A strain of E. coli O157:H7 was used to inoculate samples of fresh produce to differentiate the inoculum from the natural E. coli potentially present on the produce. Fresh market samples were tested for generic E. coli and E. coli O157:H7. Signi?cant differences in light emission were found in samples with high initial E. coli counts when market samples were compared to respective heat‐treated samples. The assay was able to detect E. coli in all produce tested, particularly at higher contamination or inoculation levels. The sensitivity of the assay ranged between 102–105 CFU within 30 min. The chemiluminescence assay provides a simple and rapid method for detection of viable E. coli, an important step towards enhancing food safety. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Water quality assessment involves the specific, sensitive, and rapid detection of bacterial indicators and pathogens in water samples, including viable but nonculturable (VBNC) cells. This work evaluates the specificity and sensitivity of a new method which combines a fluorescent in situ hybridization (FISH) approach with a physiological assay (direct viable count [DVC]) for the direct enumeration, at the single-cell level, of highly diluted viable cells of members of the family Enterobacteriaceae in freshwater and drinking water after membrane filtration. The approach (DVC-FISH) uses a new direct detection device, the laser scanning cytometer (Scan RDI). Combining the DVC-FISH method on a membrane with Scan RDI detection makes it possible to detect as few as one targeted cell in approximately 108 nontargeted cells spread over the membrane. The ability of this new approach to detect and enumerate VBNC enterobacterial cells in freshwater and drinking water distribution systems was investigated and is discussed.  相似文献   

8.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

9.
The use of fluorescence in situ hybridization (FISH) in conjunction with flow cytometry is a popular method of analysing environmental microbial populations. However, false-positive results can be produced if the specificity of oligonucleotide probe binding is not considered. An aim of this research was to evaluate the specificity of labelled oligonucleotide probe binding in FISH by flow cytometry. An excess of unlabelled probe was used to competitively inhibit the specific binding of labelled probe. Comparisons were made between the mean cell fluorescence and the number of fluorescently stained cells in a pure culture of Escherichia coli ATCC 53323. Specific binding of species-specific probes for the detection of E. coli was in the range 47–70% of total binding. A eukaryote probe and a nonsense probe, used as negative controls, had no specific binding with cells of E. coli. The significance of the results obtained is that the enumeration of specifically probe-bound microbial cells by FISH and flow cytometry must be made by an application of labelled and unlabelled probes to distinguish specifically stained cells. This is also a more practical method for the analysis of environmental samples compared to washing of excess non-specifically bound probe, due to the reduction of cell loss from the analysis.  相似文献   

10.
Aims: The specificity of a method for the enumeration of Escherichia coli (chromocult agar, CC) was tested using freshwater samples from a tropical area (Cuba Island) by isolating colonies and identifying them with API (Appareillage et procédé d’identification) strips. Enumerations of E. coli by the most probable number (MPN) microplate method were compared with counts on chromogenic and fluorogenic agar media [CC, rapid E. coli (REC), fluorocult] in tropical and temperate freshwater samples. Methods and Results: A high percentage of specificity (95·7%) for the CC agar enumeration of E. coli was observed. High regression coefficients (log‐log linear regressions) were found between E. coli counts on agar media and by the MPN method. In the tropical environment, counts with REC medium were significantly different from those obtained with the other methods. MPN counts were found to be significantly higher than those obtained using the plate counts methods in the temperate environment. Conclusions: Escherichia coli enumeration methods based on glucuronidase activity appear to be suitable for the evaluation of microbiological quality in the tropical environment featured in this study. Significance and Impact of the Study: The methods for the enumeration of E. coli tested in this study should help improve the evaluation of microbiological contamination of Cuban freshwaters.  相似文献   

11.
Escherichia coli O157:H7 is an important pathogenic Bacterium that threatens human health. A convenient, sensitive and specific method for the E. coli O157:H7 detection is necessary. We developed two pairs of monoclonal antibodies through traditional hybridoma technology, one specifically against E. coli O157 antigen and the other specifically against E. coli H7 antigen. Using these two pairs of antibodies, we developed two rapid test kits to specifically detect E. coli O157 antigen and E. coli H7 antigen, respectively. The detection sensitivity for O157 positive E. coli is 1 × 103 CFU per ml and for H7 positive E. coli is 1 × 104 CFU per ml. Combining these two pairs of antibodies together, we developed a combo test strip that can specifically detect O157: H7, with a detection sensitivity of 1 × 104 CFU per ml, when two detection lines are visible to the naked eye. This is currently the only rapid detection reagent that specifically detects O157: H7 by simultaneously detecting O157 antigen and H7 antigens of E. coli. Our product has advantages of simplicity and precision, and can be a very useful on-site inspection tool for accurate and rapid detection of E. coli O157:H7 infection.  相似文献   

12.
Aims: This research investigated the effect of sonication at frequencies of 20, 40 and 580 kHz and approximately the same acoustic intensity on the viability and declumping of two micro‐organisms (Escherichia coli and Klebsiella pneumonia). Methods and Results: Two analytical methods were employed; viable plate counts (CFU ml?1) and flow cytometry to identify and quantify both live/viable and dead bacteria in the bulk liquid. Flow cytometry results for E. coli and Kl. pneumonia indicated a high sensitivity to 20 and 40 kHz frequency with a continuous decrease in the viable cells and an increase in dead cells during experiments. In contrast, results using the higher frequency of 580 kHz indicate predominantly deagglomeration of bacterial clumps rather than cell membrane disruption (Joyce et al. 2003). Results indicate a good correlation between flow cytometry and viable plate count methodology. Conclusions: Sonication has two different effects on bacteria (i) inactivation and (ii) declumping; however, the scale of these effects is dependent on intensity and frequency. Flow cytometry provides a method to distinguish between and quantify the effects through the observation of two subpopulations: (i) live/viable and (ii) dead bacterial cells. Significance and Impact of the study: Treatment using power ultrasound has been shown to have a significant impact on microbial activity. This is the first time a study has compared the influence of a range of different frequencies, but at similar power settings on the survival of bacteria in phosphate buffer saline (PBS). This work is of importance for applications where ultrasound has been considered for use in industry as a means of disinfection including the treatment and pretreatment of water and also for the sterilization of liquid foods.  相似文献   

13.
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells’ autofluorescence, fluorophore inadequate selection and probes’ low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells’ fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.  相似文献   

14.

E. coli O157:H7 is one of the most important pathogens in food-borne diseases and is the main cause of the pseudo pandemic development of hemorrhagic colitis and hemolytic uremic syndrome. Also E. coli O157:H7 is the most common serotype of Shiga-toxin-producing E. coli. Traditional methods for detecting E. coli O157:H7 are expensive, time-consuming, and less sensitive. A method with high sensitivity and high-resolution optical detection is utilizes the LSPR property of spherical gold nanoparticles (GNP). In this work, we constructed a novel nano-bio probe to detect E. coli O157:H7 by synthesizing citrate gold nanoparticle conjugated (non-covalent bond) with specific chicken anti-E. coli O157:H7 antibody (IgY) by changing the pH of the nanoparticles’ environment. UV-visible and DLS methods were used to confirm the bonding between the antibody and nanoparticles and the LSPR sensitivity of the nano-bio probe was evaluated by ELISA method. We could optically detect this bacterium in less than 2 h by measuring the LSPR band λ max shifts of GNPs. The sensitivity of this novel biosensor was determined by about 10 CFU/ml, using the LSPR property of spherical gold nanoparticles. So that, the LSPR λ max red shifted from 530 to 543 nm in presence of 10 CFU bacterium. In conclusion, this nano biosensor can be used to detect this important pathogen among the clinical specimens.

  相似文献   

15.
AIMS: To examine whether incubation of Escherichia coli in nondisinfected drinking water result in development of cells that are not detectable using standard procedures but maintain a potential for metabolic activity and cell division. METHODS AND RESULTS: Survival and detectability of four different E. coli strains were studied using drinking water microcosms and samples from contaminated drinking water wells. Recovery of E. coli was compared using different cultivation-dependent methods, fluorescence in situ hybridization (FISH) using specific oligonucleotide probes, direct viable counts (DVC), and by enumeration of gfp-tagged E. coli (green fluorescent protein, GFP). Two levels of stress responses were observed after incubation of E. coli in nondisinfected drinking water: (i) the presence of cells that were not detected using standard cultivation methods but could be cultivated after gentle resuscitation on nonselective nutrient-rich media, and (ii) the presence of cells that responded to nutrient addition but could only be detected by cultivation-independent methods (DVC, FISH and GFP). Collectively, the experiments demonstrated that incubation for 20-60 days in nondisinfected drinking water resulted in detection of only 0.7-5% of the initial E. coli population using standard cultivation methods, whereas 1-20% could be resuscitated to a culturable state, and 17-49% could be clearly detected using cultivation-independent methods. CONCLUSIONS: Resuscitation of stressed E. coli on nonselective nutrient-rich media increased cell counts in drinking water using both traditional (CFU), and cultivation-independent methods (DVC, FISH and GFP). The cultivation-independent methods resulted in detection of 10-20 times more E. coli than the traditional methods. The results indicate that a subpopulation of substrate-responsive but apparent nonculturable E. coli may develop in drinking water during long-term starvation survival. SIGNIFICANCE AND IMPACT OF THE STUDY: The existence of substrate-responsive but nonculturable cells should be considered when evaluating the survival potential of E. coli in nondisinfected drinking water.  相似文献   

16.
A combination of direct viable count (DVC) and fluorescent in situ hybridization (FISH) procedures was used to enumerate viable Escherichia coli in river waters and wastewaters. A probe specific for the 16S rRNA of E. coli labeled with the CY3 dye was used; enumeration of hybridized cells was performed by epifluorescence microscopy. Data showed that the method was able to accurately enumerate a minimum of 3000 viable E. coli among a large number of non-fecal bacteria. When applied to river water and wastewater samples, the DVC-FISH method gave systematically higher E. coli counts than a reference culture-based method (miniaturized MPN method). The ratio between both counts (DVC-FISH/MPN) increased with decreasing abundance of culturable E. coli indicating that the proportion of viable but non-culturable (VBNC) E. coli (detectable by the DVC-FISH procedure and not by a culture-based method) was higher in low contaminated environments. We hypothesized that the more stressing conditions, i.e. nutritional stress and sunlight effect, met in low contaminated environments were responsible for the larger fraction of VBNC E. coli. A survival experiment, in which sterile mineral water was inoculated with a pure E. coli strain and incubated, confirmed that stressing conditions induced the apparition of non-culturable E. coli detectable by the DVC-FISH procedure. The analysis of the E. coli concentration along a Seine river longitudinal profile downstream a large input of fecal bacteria by a WWTP outfall showed an increasing fraction of VBNC E. coli with increasing residence time of the E. coli in the river after release. These data suggest that the DVC-FISH method is useful tool to analyze the dynamics of fecal bacteria in river water.  相似文献   

17.
Aims: Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. Methods and Results: Spinach plants were maintained in the growth chamber at 20°C (14 h) and 18°C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and one nonpathogenic E. coli isolate were applied to individual 4‐week‐old spinach plants (cultivar ‘Whale’) grown in sandy soil. Leaf and soil inocula consisted of 100 μl, in 5 μl droplets, on the upper side of leaves resulting in 6·5 log CFU plant?1 and 1 ml in soil, resulting in 6·5 log CFU 200 g?1 soil per plant. Four replicates of each plant shoot and soil sample per inoculum were analysed on day 1 and every 7 days for 28 days for E. coli O157:H7 and nonpathogenic E. coli (by MPN) and for heterotrophic plate counts (HPC). Escherichia coli O157:H7 was not detected on plant shoots after 7 days but did survive in soil for up to 28 days. Nonpathogenic E. coli survived up to 14 days on shoots and was detected at low concentrations for up to 28 days. In contrast, there were no significant differences in HPC from days 0 to 28 on plants, except one treatment on day 7. Conclusions: Escherichia coli O157:H7 persisted in soil for at least 28 days. Escherichia coli O157:H7 on spinach leaves survived for less than 14 days when co‐inoculated with nonpathogenic E. coli. There was no correlation between HPC and E. coli O157:H7 or nonpathogenic E. coli. Significance and Impact of the Study: The persistence of nonpathogenic E. coli isolates makes them possible candidates as surrogates for E. coli O157:H7 on spinach leaves in field trials.  相似文献   

18.
Fluorescence in situ hybridization (FISH) is a widely used method to detect environmental microorganisms. The standard protocol is typically conducted at a temperature of 46°C and a hybridization time of 2 or 3 h, using the fluorescence signal intensity as the sole parameter to evaluate the performance of FISH. This paper reports our results for optimizing the conditions of FISH using rRNA-targeted oligonucleotide probes and flow cytometry and the application of these protocols to the detection of Escherichia coli in seawater spiked with E.coli culture. We obtained two types of optimized protocols for FISH, which showed rapid results with a hybridization time of less than 30 min, with performance equivalent to or better than the standard protocol in terms of the fluorescence signal intensity and the FISH hybridization efficiency (i.e., the percentage of hybridized cells giving satisfactory fluorescence intensity): (i) one-step FISH (hybridization is conducted at 60 to 75°C for 30 min) and (ii) two-step FISH (pretreatment in a 90°C water bath for 5 min and a hybridizing step at 50 to 55°C for 15 to 20 min). We also found that satisfactory fluorescence signal intensity does not necessarily guarantee satisfactory hybridization efficiency and the tightness of the targeted population when analyzed with a flow cytometer. We subsequently successfully applied the optimized protocols to E. coli-spiked seawater samples, i.e., obtained flow cytometric signatures where the E. coli population was well separated from other particles carrying fluorescence from nonspecific binding to probes or from autofluorescence, and had a good recovery rate of the spiked E. coli cells (90%).  相似文献   

19.
Aims: Developing a rapid method for detection of faecal pollution is among the critical goals set forth by the Environmental Protection Agency in its revision of water quality criteria. The purpose of this study is to devise and test covalently linked antibody–bead complexes for faecal indicator bacteria (FIB), specifically Escherichia coli or Enterococcus spp., in measuring water quality in freshwater and marine systems. Methods and Results: Covalently linked complexes were 58–89% more robust than antibody–bead complexes used in previous studies. Freshwater and marine water samples analysed using covalently linked immunomagnetic separation/adenosine triphosphate quantification technique (Cov‐IMS/ATP) and culture‐based methods yielded good correlations for E. coli (R = 0·87) and Enterococcus spp. (R = 0·94), with method detection limits below EPA recreational water quality health standards for single standard exceedances (E. coli– 38 cells per 100 ml; Enterococcus spp. – 25 cells per 100 ml). Cov‐IMS/ATP correctly classified 87% of E. coli and 94% of Enterococcus spp. samples based on these water quality standards. Cov‐IMS/ATP was also used as a field method to rapidly distinguish differential loading of E. coli between two stream channels to their confluence. Conclusions: Cov‐IMS/ATP is a robust, in‐field detection method for determining water quality of both fresh and marine water systems as well as differential loading of FIB from two converging channels. Significance and Impact of the Study: To our knowledge, this is the first work to present a viable rapid, in‐field assay for measuring FIB concentrations in marine water environments. Cov‐IMS/ATP is a potential alternative detection method, particularly in areas with limited laboratory support and resources, because of its increased economy and portability.  相似文献   

20.
Escherichia coli was grown in a defined medium at optimum temperature and then transferred to each of five different starvation regimes at 5°C, 20°C, or 37°C, for 1000 hours. Cells were maintained with growth-limiting amounts of carbon or nitrogen, or without either or both nutrients. Bacterial cell viability was assessed by dilution plating, the reduction of 2(p-indophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT), direct viable counts (DVC), and microcolony development. The recoverability of cells on solid medium declined most rapidly, and to the greatest extent in most cases, in cultures maintained at 37°C. Only nitrogen-starved cells maintained at 5°C became completely nonculturable. The reduction of INT consistently indicated higher numbers of viable cells compared to the other methods in all cultures. The viabilities of carbon- and nitrogen-limited cells, assessed by all methods, were similar to one another at each of the temperatures. Viability was lowest at 37°C. Nutrient-downshifted cells also followed a temperature-dependent pattern of survival with viability lowest at 37°C. Morphological differences were noted at different temperatures but were most obvious for nitrogen-starved cells at 37°C, which increased in length. Correspondence to: R.W. Attwell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号