首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

2.
Experiments and theory in single trophic level systems dominate biodiversity and ecosystem functioning research and recent debates. All natural ecosystems contain communities with multiple trophic levels, however, and this can have important effects on ecosystem structure and functioning. Furthermore, many experiments compare assembled communities, rather than examining loss of species directly. We identify three questions around which to organise an investigation of how species loss affects the structure and functioning of multitrophic systems. 1) What is the distribution of species richness among trophic levels; 2) from which trophic levels are species most often lost; and 3) does loss of species from different trophic levels influence ecosystem functioning differently? Our analyses show that: 1) Relatively few high‐quality data are available concerning the distribution of species richness among trophic levels. A new data‐set provides evidence of a decrease in species richness as trophic height increases. 2) Multiple lines of evidence indicate that species are lost from higher trophic levels more frequently than lower trophic levels. 3) A theoretical model suggests that both the structure of food webs (occurrence of omnivory and the distribution of species richness among trophic levels) and the trophic level from which species are lost determines the impact of species loss on ecosystem functioning, which can even vary in the sign of the effect. These results indicate that, at least for aquatic systems, models of single trophic level ecosystems are insufficient for understanding the functional consequences of extinctions. Knowledge is required of food web structure, which species are likely to be lost, and also whether cascading extinctions will occur.  相似文献   

3.
While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini‐ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above‐ground community structures were assembled. These included treatments consisting of monoculture and two‐ and four‐species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below‐ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below‐ground properties. Above‐ground composition also had important effects on the response of below‐ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above‐ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above‐ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above‐ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above‐ground community can be an important determinant of the consistency of delivery of ecosystem services.  相似文献   

4.
Stable provisioning of ecosystem functions and services is crucial for human well‐being in a changing world. Two essential ecological components driving vital ecosystem functions in terrestrial ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the Jena Experiment) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk‐soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV?1) of soil microbial respiration and biomass measured from soil samples taken over space and time, respectively. We found that 1) plant species richness consistently increased soil microbial properties after a time lag of four years since the establishment of the experimental plots, 2) plant species richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the functional composition of plant communities significantly affected spatial stability of soil microbial properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal stability of soil microbial properties turned from being negative to neutral, suggesting that the recovery of soil microbial communities from former arable land‐use takes more than a decade. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially‐driven ecosystem processes, such as decomposition and element cycling, in temperate semi‐natural grassland.  相似文献   

5.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

6.
Pollution represents a major threat to biodiversity. A wide class of pollutants tends to accumulate within organisms and propagate within communities via trophic interactions. Thus the final effects of accumulable pollutants may be determined by the structure of food webs and not only by the susceptibility of their constituent species. Species within real food webs are typically arranged into modules, which have been proposed to be determinants of network stability. In this study we evaluate the effect of network modularity and species richness on long‐term species persistence in communities perturbed by pollutant stress. We built model food webs with different levels of modularity and used a bioenergetic model to project the dynamics of species. Further, we modeled the dynamics of bioaccumulated and environmental pollutants. We found that modularity promoted the stability of food webs subjected to pollutant stress. We also found that richer food webs were more robust at all modularity levels. Nevertheless, modularity did not promote stability of communities facing a perturbation that shared most features with the pollutant perturbation, but does not spread through trophic interactions. The positive effect of both modularity and species richness on species persistence was cancelled and even reversed when the structure of food web departed from a realistic body size distribution or a hierarchical feeding structure. Our results support the idea that modularity implies important dynamic consequences for communities facing pollution, highlighting a main role of network structure on ecosystem stability.  相似文献   

7.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

8.
Single trophic‐level studies of the relationship between biodiversity and ecosystem functioning highlight the importance of mechanisms such as resource partitioning, facilitation, and sampling effect. In a multi‐trophic context, trophic interactions such as intraguild predation may also be an important mediator of this relationship. Using a salt‐marsh food web, we investigated the interactive effects of predator species richness (one to three species) and trophic composition (strict predators, intraguild predators, or a mixture of the two) on ecosystem functions such as prey suppression and primary production via trophic cascades. We found that the trophic composition of the predator assemblage determined the impact of increasing predator species richness on the occurrence of trophic cascades. In addition, increasing the proportion of intraguild predator species present diminished herbivore suppression and reduced primary productivity. Therefore, trophic composition of the predator assemblage can play an important role in determining the nature of the relationship between predator diversity and ecosystem function.  相似文献   

9.
Food web complexity and higher-level ecosystem services   总被引:2,自引:1,他引:1  
Studies mostly focused on communities of primary producers have shown that species richness provides and promotes fundamental ecosystem services. However, we know very little about the factors influencing ecosystem services provided by higher trophic levels in natural food webs. Here we present evidence that differences in food web structure and the richness of herbivores in 19 plant‐herbivore‐parasitoid food webs influence the service supplied by natural enemies, namely, the parasitism rates on hosts. Specifically, we find that parasitoids function better in simple food webs than in complex ones, a result relevant to biological control practice. More generally, we show that species richness per se only contributes partially to the understanding of higher‐level ecosystem services in multitrophic communities, and that changes in food web complexity should also be taken into account when predicting the effects of human‐driven disturbances in natural communities.  相似文献   

10.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

11.
Human activities have led to massive influxes of pollutants, degrading the habitat of species and simplifying their biodiversity. However, the interaction between food web complexity, pollution and stability is still poorly understood. In this study we evaluate the effect exerted by accumulable pollutants on the relationship between complexity and stability of food webs. We built model food webs with different levels of richness and connectance, and used a bioenergetic model to project the dynamics of species biomasses. Further, we developed appropriate expressions for the dynamics of bioaccumulated and environmental pollutants. We additionally analyzed attributes of organisms’ and communities as determinants of species persistence (stability). We found that the positive effect of complexity on stability was enhanced as pollutant stress increased. Additionally we showed that the number of basal species and the maximum trophic level shape the complexity–stability relationship in polluted systems, and that in‐degree of consumers determines species extinction in polluted environments. Our study indicates that the form of biodiversity and the complexity of interaction networks are essential to understand and project the effects of pollution and other ecosystem threats.  相似文献   

12.
Effects of organism size and community composition on ecosystem functioning   总被引:1,自引:0,他引:1  
We tested (1) if the size of dominant species influenced ecosystem functioning in food webs consisting of bacteria, algae, and protozoa; (2) whether those effects changed in importance through time; and (3) how those effects compared with differences in diversity among experimental food webs. We constructed food webs using two size fractions of organisms that differed in individual mass by approximately two orders of magnitude. We measured total biomass and respiration (total CO2 production) as two aspects of ecosystem functioning. We also compared these size‐dependent patterns in functioning across two levels of species richness. Initially, organism size strongly influenced total community biomass. With time, however, biomass and respiration eventually converged in communities dominated by large or small species. We conclude that after sufficient time for community development any differences in ecosystem functioning resulted from differences in community composition, including species richness, but not the size of the dominant organisms.  相似文献   

13.
How species richness is distributed across trophic levels determines several dimensions of ecosystem functioning, including herbivory, predation, and decomposition rates. We perform a meta‐analysis of 72 large published food webs to investigate their trophic diversity structure and possible endogenous, exogenous, and methodological causal variables. Consistent with classic theory, we found that published food webs can generally be described as ‘pyramids of species richness’. The food webs were more predator‐poor, prey‐rich and hierarchical than is expected by chance or by the niche or cascade models. The trophic species richness distribution also depended on centrality, latitude, ecosystem‐type and methodological bias. Although trophic diversity structure is generally pyramidal, under many conditions the structure is consistently uniform or inverse‐pyramidal. Our meta‐analysis adds nuance to classic assumptions about food web structure: diversity decreases with trophic level, but not under all conditions, and the decrease may be scale‐dependent. Synthesis The distribution of species richness across trophic levels has not been evaluated in recent decades, despite improvement in food web resolution and the relevance of biodiversity distribution to ecosystem function. Our meta‐analysis of 72 large, recent food webs, illustrates that published food webs can generally be described as basal‐rich, top‐poor ‘pyramids of species richness’, consistent with classic theory. Although trophic diversity structure is generally pyramidal, under some environmental and ecological conditions the structure is uniform or inverse‐pyramidal. Our meta‐analysis confirms classic theory about food web structure, while adding nuance by describing conditions under which classic pyramid structure is not observed.  相似文献   

14.
Trophic interactions can strongly influence the structure and function of terrestrial and aquatic communities through top-down and bottom-up processes. Species with life stages in both terrestrial and aquatic systems may be particularly likely to link the effects of trophic interactions across ecosystem boundaries. Using experimental wetlands planted with purple loosestrife (Lythrum salicaria), we tested the degree to which the bottom-up effects of floral density of this invasive plant could trigger a chain of interactions, changing the behavior of terrestrial flying insect prey and predators and ultimately cascading through top-down interactions to alter lower trophic levels in the aquatic community. The results of our experiment support the linkage of terrestrial and aquatic food webs through this hypothesized pathway, with high loosestrife floral density treatments attracting high levels of visiting insect pollinators and predatory adult dragonflies. High floral densities were also associated with increased adult dragonfly oviposition and subsequently high larval dragonfly abundance in the aquatic community. Finally, high-flower treatments were coupled with changes in zooplankton species richness and shifts in the composition of zooplankton communities. Through changes in animal behavior and trophic interactions in terrestrial and aquatic systems, this work illustrates the broad and potentially cryptic effects of invasive species, and provides additional compelling motivation for ecologists to conduct investigations that cross traditional ecosystem boundaries.  相似文献   

15.
Global change is increasing the occurrence of perturbation events on natural communities, with biological invasions posing a major threat to ecosystem integrity and functioning worldwide. Most studies addressing biological invasions have focused on individual species or taxonomic groups to understand both, the factors determining invasion success and their effects on native species. A more holistic approach that considers multispecies communities and species’ interactions can contribute to a better understanding of invasion effects on complex communities. Here we address biological invasions on species‐rich food webs. We performed in silico experiments on empirical vertebrate food webs by introducing virtual species characterised by different ecological roles and belonging to different trophic groups. We varied a number of invasive species traits, including their diet breadth, the number of predators attacking them, and the bioenergetic thresholds below which invader and native species become extinct. We found that simpler food webs were more vulnerable to invasions, and that relatively less connected mammals were the most successful invaders. Invasions altered food web structure by decreasing species richness and the number of links per species, with most extinctions affecting poorly connected birds. Our food web approach allows identifying the combinations of trophic factors that facilitate or prevent biological invasions, and it provides testable predictions on the effects of invasions on the structure and dynamics of multitrophic communities.  相似文献   

16.
Most research that demonstrates enhancement and stabilization of ecosystem functioning due to biodiversity is based on biodiversity manipulations within one trophic level and measuring changes in ecosystem functions provided by that same trophic level. However, it is less understood whether and how modifications of biodiversity at one trophic level propagate vertically to affect those functions supplied by connected trophic levels or by the whole ecosystem. Moreover, most experimental designs in biodiversity–ecosystem functioning research assume random species loss, which may be of little relevance to non‐randomly assembled communities. Here, we used data from a published ecotoxicological experiment in which an insecticide gradient was applied as an environmental filter to shape consumer biodiversity. We tested how non‐random consumer diversity loss affected gross primary production (an ecosystem function provided by producers) and respiration (an ecosystem function provided by the ecosystem as whole) in species‐rich multitrophic freshwater communities (total of 128 macroinvertebrate and 59 zooplankton species across treatments). The insecticide decreased and destabilized macroinvertebrate and, to a lesser extent, zooplankton diversity. However, these effects on biodiversity neither affected nor destabilized any of the two studied ecosystem functions. The main reason for this result was that species susceptible to environmental filtering were different from those most strongly contributing to ecosystem functioning. The insecticide negatively affected the most abundant species, whereas much less abundant species had the strongest effects on ecosystem functioning. The latter finding may be explained by differences in body size and feeding guild membership. Our results indicate that biodiversity modifications within one trophic level induced by non‐random species loss do not necessarily translate into changes in ecosystem functioning supported by other trophic levels or by the whole community in the case of limited overlap between sensitivity and functionality.  相似文献   

17.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

18.
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. ‘species richness’) may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include ‘response diversity’, describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio‐temporal complementarity among species, leading to long‐term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change.  相似文献   

19.
Biodiversity and ecosystem function: the consumer connection   总被引:14,自引:1,他引:13  
J. Emmett Duffy 《Oikos》2002,99(2):201-219
Proposed links between biodiversity and ecosystem processes have generated intense interest and controversy in recent years. With few exceptions, however, empirical studies have focused on grassland plants and laboratory aquatic microbial systems, whereas there has been little attention to how changing animal diversity may influence ecosystem processes. Meanwhile, a separate research tradition has demonstrated strong top‐down forcing in many systems, but has considered the role of diversity in these processes only tangentially. Integration of these research directions is necessary for more complete understanding in both areas. Several considerations suggest that changing diversity in multi‐level food webs can have important ecosystem effects that can be qualitatively different than those mediated by plants. First, extinctions tend to be biased by trophic level: higher‐level consumers are less diverse, less abundant, and under stronger anthropogenic pressure on average than wild plants, and thus face greater risk of extinction. Second, unlike plants, consumers often have impacts on ecosystems disproportionate to their abundance. Thus, an early consequence of declining diversity will often be skewed trophic structure, potentially reducing top‐down influence. Third, where predators remain abundant, declining diversity at lower trophic levels may change effectiveness of predation and penetrance of trophic cascades by reducing trait diversity and the potential for compensation among species within a level. The mostly indirect evidence available provides some support for this prediction. Yet effects of changing animal diversity on functional processes have rarely been tested experimentally. Evaluating impacts of biodiversity loss on ecosystem function requires expanding the scope of current experimental research to multi‐level food webs. A central challenge to doing so, and to evaluating the importance of trophic cascades specifically, is understanding the distribution of interaction strengths within natural communities and how they change with community composition. Although topology of most real food webs is extremely complex, it is not at all clear how much of this complexity translates to strong dynamic linkages that influence aggregate biomass and community composition. Finally, there is a need for more detailed data on patterns of species loss from real ecosystems (community “disassembly” rules).  相似文献   

20.
Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic levels due to a combination of direct and indirect effects in diverse multitrophic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号