首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes.  相似文献   

2.
3.
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom‐up and top‐down effects among trophic groups and supported top‐down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom‐up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top‐down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom‐up‐only model.  相似文献   

4.
1. Abundance and composition of periphyton and benthic macroinvertebrates were treated as potential nutrient response variables for 74 streams in montane Colorado. The streams ranged from unenriched to mildly enriched with nutrients (N, P). 2. The study showed no meaningful relationship between periphyton biomass accumulation and concentrations of total or dissolved forms of nitrogen or phosphorus. Nutrient concentrations were also unrelated to periphyton and macroinvertebrate richness, diversity and community composition. Macroinvertebrate communities did, however, show a strong positive relationship to periphyton abundance. 3. A positive response of periphyton biomass to increasing nutrient concentrations has been well documented over large ranges of nutrient concentrations. Our study suggests that the nutrient response is suppressed by other controlling factors on the lower limb of the nutrient response curve (i.e. at low nutrient concentrations); a quantitatively significant response occurs only in excess of a threshold beyond which nutrients become dominant over other controlling factors. This interpretation of the results is consistent with published meta‐analyses showing lack of nutrient response for a high proportion of experimentally enriched periphyton communities, and division of responses between N and P for communities that do show growth in response to enrichment. 4. Grazing probably is not the key controlling variable for periphyton in Colorado mountain streams, given that the highest chlorophyll concentrations are associated with the highest abundances of macroinvertebrates. Modelling indicates that the initial amount of periphyton biomass at the start of the growing season, in conjunction with elevation‐related length of the growing season and water temperature, explains most of the variation in periphyton accumulation among these streams, but there is a yet unexplained suppression of periphyton growth rates across all elevations.  相似文献   

5.
6.
Shallow lakes, the most abundant lake type in the world, are very sensitive to climatic changes. The structure and functioning of shallow lakes are greatly impacted by submerged plants, and these may be affected by climate warming in various, contrasting, ways. Following a space‐for‐time substitution approach, we aimed to analyse the role of aquatic (submerged and free‐floating) plants in shallow lakes under warm climates. We introduced artificial submerged and free‐floating plant beds in five comparable lakes located in the temperate zone (Denmark, 55–57 °N) and in the subtropical zone (Uruguay, 30–35 °S), with the aim to study the structure and dynamics of the main associated communities. Regardless of differences in environmental variables, such as area, water transparency and nutrient status, we found consistent patterns in littoral community dynamics and structure (i.e. densities and composition of fish, zooplankton, macroinvertebrates, and periphyton) within, but substantial differences between, the two regions. Subtropical fish communities within the macrophyte beds exhibited higher diversity, higher density, smaller size, lower relative abundance of potentially piscivores, and a preference for submerged plants, compared with otherwise similar temperate lakes. By contrast, macroinvertebrates and cladocerans had higher taxon richness and densities, and periphyton higher biomass, in the temperate lakes. Several indicators suggest that the fish predation pressure was much stronger among the plants in the subtropical lakes. The antipredator behaviour of cladocerans also differed significantly between climate zones. Submerged and free‐floating plants exerted different effects on the spatial distribution of the main communities, the effects differing between the climate zones. In the temperate lakes, submerged plants promoted trophic interactions with potentially positive cascading effects on water transparency, in contrast to the free‐floating plants, and in strong contrast to the findings in the subtropical lakes. The higher impact of fish may result in higher sensitivity of warm lakes to external changes (e.g. increase in nutrient loading or water level changes). The current process of warming, particularly in temperate lakes, may entail an increased sensitivity to eutrophication, and a threat to the high diversity, clear water state.  相似文献   

7.
We aimed to study whether the varying changes in predation pressure by perch (Perca fluviatilis) reflect the biomass, density, and community structure of the benthic macroinvertebrates. Prey preference is size-dependent, and overall predation pressure is density dependent, and thus the size structure of the P. fluviatilis population should affect the structure of the macroinvertebrate community, and the population density of P. fluviatilis should reflect the overall density of benthic macroinvertebrates. We sampled the littoral benthic community in a boreal lake that had been divided into two parts that were subjected to two different fishing procedures during 2007–2012 period and analyzed the macroinvertebrate diet of fish. The benthic macroinvertebrate community reflected the predation pressure. Total macroinvertebrate biomass increased during the study period in the lake division with a non-size-selective fishing procedure (NSF), i.e., all invertivorous perch size-classes targeted, but decreased in the section with negatively size-selective fishing procedure (SSF), i.e., large invertivorous individuals ≥ 16 cm were not targeted. This difference was a result of the increase in large-sized species, such as Odonata, for the NSF procedure and decrease in the SSF procedure. In contrast to total biomass, total macroinvertebrate density did not show a response to predator size structure but rather total macroinvertebrate density decreased with increasing fish density. The study demonstrates the effect of predation pressure of P. fluviatilis on benthic communities, thus highlighting the keystone predator role of the species in boreal lakes and gives more insight on the multiple effects of fish predation on littoral benthic communities.  相似文献   

8.
Fish introduction is a major threat to alpine lake biota leading to the loss of native species and to the degeneration of natural food-webs. This study provides an extensive investigation on the impact of the introduced fish Salvelinus fontinalis on the native communities of alpine lakes in the Gran Paradiso National Park. We compared the macroinvertebrate and zooplankton communities of six stocked and nine fishless lakes with a repeated sampling approach during the summers 2006–2009. The impact of fish presence on alpine lake fauna is often mediated by the strong seasonality governing these ecosystems, and it dramatically affects the faunal assemblage of littoral macroinvertebrates and the size, structure, and composition of the pelagic zooplankton community with a strong selective predation of the more visible taxa. Direct ecological impacts include a decrease or extinction of non-burrower macroinvertebrates and of large zooplankton species, while small zooplankton species and burrower macroinvertebrates were indirectly advantaged by fish presence. Due to the existence of a compensation between rotifers and crustaceans, fish presence does not affect total zooplankton biomass and diversity even if fish are a factor of ecological exclusion for large crustaceans. These compensatory mechanisms are a key process surrounding the impact of introduced fish in alpine lakes.  相似文献   

9.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

10.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

11.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

12.
13.
Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.  相似文献   

14.
1. We examined small, fishless headwater streams to determine whether transport of macroinvertebrates into the littoral zone of an oligotrophic lake augmented food availability for Cottus asper, an abundant predatory fish in our study system. We sampled fish and macroinvertebrates during the recruitment and growth season of 2 years, either monthly (2004) or bi‐monthly (2005), to observe whether stream inputs increased prey availability and whether variation in total macroinvertebrate biomass was tracked by fish. 2. Observations from eight headwater streams indicated that streams did not increase the total macroinvertebrate biomass in the shallow littoral zone at stream inflows, relative to adjacent plots without stream inputs (controls). The taxonomic composition of stream macroinvertebrates drifting toward the lake differed from that in the littoral lake benthos itself, although there was no evidence of any species change in the composition of the littoral benthos brought about by stream inputs. 3. Although streams made no measurable contribution to the biomass or taxonomic composition of the littoral macroinvertebrate benthos, there was substantial temporal variation in biomass among the eight sites for each of the (n = 7) sample periods during which observations were made. Variation in total biomass was primarily a function of bottom slope and benthic substrata in the lake habitats. Dominant taxonomic groups were Baetidae, Ephemerellidae (two genera), Leptophlebiidae, Chironomidae (three subfamilies) and Perlodidae, although we did not determine the specific substratum affinities of each taxon. 4. Mixed effects linear models identified a significant interaction between macroinvertebrate biomass and plot type (stream inflow vs. control) associated with fish abundance. Across the observed range of macroinvertebrate biomass, fish showed a significant preference for stream inflows, but more closely tracked food availability in the controls. For young‐of‐the‐year (YOY), a negative effect of temperature was also included in the model, and we observed lower temperatures at stream inflows. However, abundance of predatory adults affected habitat selection for YOY. Lake‐bottom slope also accounted for variation in abundance in both fish models. 5. Our results suggest that the effect of fishless headwater streams on downstream fish may not always be through direct delivery of food. In this study system, fish preferred stream inflow plots, but this preference interacted with macroinvertebrate biomass in a manner that was difficult to explain. For YOY, predation risk was related to the preference for stream inflows, although the specific factor that mitigates predation risk remains poorly understood.  相似文献   

15.
1. Aquatic herbivores typically have much higher concentrations of nutrients (e.g. N and P) in their tissues than there is in the food they eat. These stoichiometric differences can cause herbivores to be limited by the elemental quality of their food, which could affect, in turn, the structure of consumer communities and even alter key ecosystem processes. 2. In streams and in the littoral zone of shallow lakes, periphyton is an important food resource for benthic animals. Studying the elemental composition of periphyton may help us to understand food‐web structure, and any reciprocal effect of this structure on periphyton stoichiometry. 3. To understand how alterations in the food‐web structure affect the elemental composition of periphyton in a eutrophic lake, we carried out a long‐term experiment (14 months) in large‐scale mesocosms (40 m3), in which we manipulated food‐web structure, and which were dominated either by planktivorous fish (Rutilus rutilus) or herbivorous invertebrates (without fish). Periphyton was sampled monthly at three depths (0.5, 1.5 and 2.5 m) to determine its biomass and elemental composition (C/N/P ratio). Food‐web structure, physical and chemical parameters were monitored throughout the experiment. 4. Fish had indirect positive effect on periphyton biomass, leading to twofold higher levels than in herbivore‐dominated mesocosms. This result was probably due to control of benthic consumers by fish, suggesting a strong top–down control on periphyton by their consumers in fishless enclosures. 5. The elemental ratios C/P and C/N were lower in deep water in both treatments, mainly mediated by light availability, in accordance with the light/nutrient ratio hypothesis. These ratios were also lower in fishless treatments, probably due to increases in inorganic nutrient availability and grazing pressure in herbivore‐dominated systems. During winter, periphyton elemental composition was similar in both treatments, and was unrelated to inorganic nutrient availability. 6. These results indicate that any alteration of food‐web structure in lakes, such as in biomanipulation experiments, is likely to modify both the biomass and elemental quality of periphyton. Resultant effects on the consumers of periphyton and macrophytes could play a key role in the success of biomanipulations and should be taken into account in further studies.  相似文献   

16.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

17.
1. In large deep oligotrophic lakes, the shallow nearshore waters may provide the most important habitat for animals to feed and breed, and it is this area of the lake where humans are most likely to have initial impacts as the shoreline is developed. Nutrients in fertilizers, sediments and sewage effluents are likely to be rapidly intercepted by nearshore algae at the lake edge, having heterogeneous effects nearshore before offshore effects are noted. 2. Here we examined the spatially explicit effects of residential development on nearshore periphyton communities in three large deep oligotrophic lakes that have all experienced modest residential development in the Pacific Northwest of the United States. We demonstrate that substantial nearshore changes in the basal food web are detectable even with low levels of shoreline development. These changes can potentially affect whole‐lake food web dynamics. 3. For our primary study site (Lake Crescent, Washington, USA), we found that algal biomass and accumulation of detritus were higher at developed sites. In addition, both macroinvertebrate and periphyton communities exhibited a shift in composition with more detritivores and filamentous green algae at developed sites. These differences were more pronounced during the spring than at other times of year. 4. A complementary investigation of field patterns in Priest Lake and Lake Pend Oreille (Idaho, USA) suggested that, although spatial and temporal patterns were idiosyncratic, indicators of productivity and the presence of filamentous green algae were generally higher at developed sites across lakes. 5. Stable isotope signatures and water column nutrients were not useful in distinguishing developed and undeveloped sites, increasing the potential usefulness of periphyton monitoring during early stages of lake development. 6. A laboratory investigation suggested that common macroinvertebrate grazers assimilated a much greater proportion of diatoms than the filamentous green algae that are associated with fertilization at developed sites. 7. These findings have at least two clear implications: (i) periphyton may be used to detect human impacts before disturbance is evident in offshore monitoring programmes and (ii) nearshore impacts in response to modest residential development have the potential to disrupt lake food web dynamics.  相似文献   

18.
19.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

20.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号