首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

2.
The Neotropics, Afrotropics and Madagascar have different histories which have influenced their respective patterns of diversity. Based on current knowledge of these histories, we developed the following predictions about the phylogenetic structure and composition of rainforest tree communities: (Hypothesis 1) isolation of Gondwanan biotas generated differences in phylogenetic composition among biogeographical regions; (H2) major Cenozoic extinction events led to lack of phylogenetic structure in Afrotropical and Malagasy communities; (H3) greater angiosperm diversification in the Neotropics led to greater phylogenetic clustering there than elsewhere; (H4) phylogenetic overdispersion is expected near the Andes due to the co‐occurrence of magnoliids tracking conserved habitat preferences and recently diversified eudicot lineages. Using abundance data of tropical rainforest tree species from 94 communities in the Neotropics, Afrotropics and Madagascar, we computed net relatedness index (NRI) to assess local phylogenetic structure, i.e. phylogenetic clustering vs. overdispersion relative to regional species pools, and principal coordinates of phylogenetic structure (PCPS) to assess variation in phylogenetic composition across communities. We observed significant differences in phylogenetic composition among biogeographical regions (agreement with H1). Overall phylogenetic structure did not differ among biogeographical regions, but results indicated variation from Andes to Amazon. We found widespread phylogenetic randomness in most Afrotropical and all Malagasy communities (agreement with H2). Most of central Amazonian communities were phylogenetically random, although some communities presented phylogenetic clustering (partial agreement with H3). We observed phylogenetic overdispersion near the Andes (agreement with H4). We were able to identify how differences in lineage composition are related to local phylogenetic co‐occurrences across biogeographical regions that have been undergoing different climatic and orographic histories during the past 100 Myr. We observed imprints of the history following Gondwana breakup on phylobetadiversity and local phylogenetic structure of rainforest tree communities in the Neotropics, Afrotropics and Madagascar.  相似文献   

3.
Aims This study assesses the relationship between phylogenetic relatedness of angiosperm tree species and climatic variables in local forests distributed along a tropical elevational gradient in South America. In particular, this paper addresses two questions: Is phylogenetic relatedness of plant species in communities related to temperature variables more strongly than to water variables for tropical elevational gradients? Is phylogenetic relatedness of plant species in communities driven by extreme climatic conditions (e.g. minimum temperature (MT) and water deficit) more strongly than by climatic seasonal variability (e.g. temperature seasonality and precipitation seasonality)?Methods I used a set of 34 angiosperm woody plant assemblages along an elevational gradient in the Andes within less than 5 degrees of the equator. Phylogenetic relatedness was quantified as net relatedness index (NRI) and nearest taxon index (NTI) and was related to major climatic variables. Correlation analysis and structure equation modeling approach were used to assess the relationships between phylogenetic relatedness and climatic variables.Important findings Phylogenetic relatedness of angiosperm woody species in the local forest communities is more strongly associated with temperature-related variables than with water-related variables, is positively correlated with mean annual temperature (MAT) and MT, and is related with extreme cold temperature more strongly than with seasonal temperature variability. NTI was related with elevation, MAT and MT more strongly than was NRI. Niche convergence, rather than niche conservatism, has played a primary role in driving community assembly in local forests along the tropical elevational gradient examined. Negative correlations of phylogenetic relatedness with elevation and higher correlations of phylogenetic relatedness with elevation and temperature for NTI than for NRI indicate that evolution of cold tolerance at high elevations in tropical regions primarily occurred at recent (terminal) phylogenetic nodes widely distributed among major clades.  相似文献   

4.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

5.
研究不同径级尺度群落系统发育多样性有助于了解不同年龄模式下物种的亲缘关系及其群落系统发育结构; 但是关于物种多度对群落系统发育结构影响的研究较少。以海南尖峰岭热带山地雨林群落为例, 首先在不同径级尺度比较物种多度加权与否分别对4个广泛采用的系统发育指数的影响, 继而利用其中2个经过标准化处理的系统发育多样性指数: 净种间亲缘关系指数(net relatedness index, NRI)和净最近种间亲缘关系指数(nearest taxon index, NTI), 结合群落的生境类型来量度不同局域生境条件下不同径级尺度木本植物系统发育关系。结果发现: (1)未考虑物种多度加权的系统发育平均成对距离(mean pairwise distance, MPD)指数比考虑物种多度加权的MPD指数显著地高估了群落整体系统发育多样性, 且这种现象在小径级尺度(1 cm≤DBH<5 cm)最为明显。因此, 在森林监测样地中对于中、小径级群落系统发育结构研究中建议考虑物种多度信息。(2) 从群落组成整体系统发育结构来看, 尖峰岭热带山地雨林在几乎所有径级尺度和生境下均倾向于系统发育发散, 且随着径级的递增发散程度趋于明显(NRI<0)。(3)从群落组成局部系统发育结构来看, 尖峰岭热带山地雨林在中、小径级倾向于系统发育聚集(NTI>0), 而在大径级(DBH≥15 cm)则倾向于系统发育发散(NTI<0)。总之, 研究群落系统发育结构时应考虑物种多度的影响以及径级尺度效应。  相似文献   

6.
Previous research has shown that both environmental and historical factors influence the taxonomic structure of animal communities; yet, the relative importance of these effects is not known for primates. Environmental characteristics shape the possible niches in a community, providing suitable habitats for some species and not others. Therefore, communities found in similar environments should display similar species compositions. Additionally, geography may be viewed as a surrogate for historical processes. For instance, as the geographic distance between communities increases, dispersal between sites is more limited, and the probability of historical vicariance increases. Therefore, communities in close proximity to each other should exhibit similar species compositions. The geographic location, environmental characteristics, and species composition of 168 primate communities were gathered from the literature. Canonical correspondence analyses were conducted to examine the relative effects of geographic distance and environmental variables on the taxonomic structure of communities. In addition, UPGMA cluster analyses were conducted to better visualize the taxonomic similarity of communities. Spatial variables were significant predictors of community structure in all regions. Rainfall patterns explained African, Malagasy, and Neotropical community structure. In addition, maximum temperature was also correlated with community structure in Madagascar and the Neotropics. No climatic variables predicted Asian community structure. These results demonstrate that both historical and environmental factors play a significant role in structuring modern primate communities; yet, the importance of environmental factors depend on the region in question. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

8.
物种谱系关系常被用于衡量群落谱系格局及推断格局背后的生态过程,但多数研究往往忽视谱系关系的不确定性及其可能对群落谱系格局造成的影响.为此,本文以浙江天童20 hm^2样地内150个树种为研究对象,采用这些物种叶绿体DNA的rbcL和matK碱基序列构建1棵一致系统发育树和反映谱系不确定性的999棵系统发育树,然后结合样地物种分布数据计算标准化净亲缘指数(NRI)和最近亲缘指数(NTI),最后运用独立置换零模型衡量样地群落谱系格局.结果表明:物种系统发育树在拓扑结构和物种谱系分支节点年龄上均存在较大的不确定性,谱系不确定性随着谱系分支节点年龄的减小而增大,也随物种间平均谱系距离的增加而增加;在样方尺度上,物种谱系的不确定性增加了标准化NRI和NTI指数的变异,但对两个指数的影响几乎独立;其对两指数的空间分布影响不同,且程度不一,其中标准化NRI受到的影响相对更大;在群落尺度上,物种谱系的不确定性增加了标准化NRI和NTI的变异,平均变异系数分别为0.37和0.077,表明群落水平的标准化NRI更易受到谱系不确定性的影响.这说明物种谱系不确定性会传递到常用的群落谱系格局指标中,且不同指标受影响的程度不同,进而影响对群落谱系格局的衡量及相关生态过程的推断.该结论也暗示以往不考虑谱系不确定性的研究中,非随机的群落谱系格局比例可能被高估.  相似文献   

9.
Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.  相似文献   

10.
Ant communities in tropical forests may be governed by varying assembly mechanisms, depending on the particular habitat investigated. We compared phylogenetic diversity and structure across two forest biomes (dry and humid) and two vertical layers (arboreal and terricolous) in ant communities in Madagascar, and assessed the influence of invasive species on this community structure. We estimated phylogenetic signal and correlated evolution for habitat and several functional traits and tested for conservatism in relevant functional and habitat traits. Ancestral states were reconstructed to illuminate the evolution of habitat traits. All analyses utilized phylogenies estimated from newly generated data from three nuclear markers for 290 Malagasy ant taxa. Dry forests, although lower in species richness, were found to support equally high lineage diversity as humid forests. In contrast, phylogenetic diversity was much lower in arboreal than in terricolous communities. We observed significant phylogenetic clustering in the combined humid forest and in the arboreal–humid, arboreal–dry and terricolous–humid communities, whereas the combined dry forest community was overdispersed. Among ant communities in Madagascar, overdispersion and competition therefore may be more prevalent in dry forest, and habitat filtering may be more dominant in humid forest. Excluding invasive ant species had little overall effect on community structure. All investigated traits showed low to intermediate conservatism; strong support for correlated evolution was found for increased eye size and an arboreal lifestyle. Habitat transitions from humid to dry and from terricolous to arboreal occurred more frequently, and ancestors of most lineages were predicted to be terricolous or humid‐forest adapted. We conclude that most Malagasy ant clades first colonized humid forests and subsequently transitioned into dry forests, indicating that previous hypotheses on the evolution of Madagascar's hyperdiverse biota may not apply to ants and other arthropods.  相似文献   

11.
Density dependence, environmental sorting and chance have been discussed for the purpose of understanding, predicting and explaining the species richness, composition and structural parameters of living communities. Different ecological mechanisms occur individually in an overlapping manner, so the structure of each local community is influenced by an independent mixture of these factors. To identify which of these factors prevails in organizing the species-rich tree community from 100 plots of 10 × 10 m in a primary forest patch (the Forest of Seu Nico – FSN, from the Atlantic Forest domain), we analyzed species-environment correlations via canonical correspondence analysis and identified two different pedo-environments. We analyzed the community’s phylogenetic structure using Phylocom 4.2 software to calculate the net relatedness index (NRI) and the nearest taxon index (NTI). Furthermore, we partitioned the total phylogenetic diversity into independent α and β components (ΠST). To reveal the overlap of ecological mechanisms such as neutrality, environmental filtering and density-dependent factors, we analyzed the phylogenetic structure in both pedo-environments. The species-environment correlations observed in the FSN are weak in comparison with those found in other studies, although the permanent plot presents a short environmental gradient, dividing the plot into an upper, more acidic hillside and a lower, more fertile bottom. The overall phylogenetic structure of the FSN community shows strong and significant phylogenetic overdispersion. This overdispersion indicates that density-dependent factors, such as interspecific competition, play an important role in maintaining the species richness and community structure in megadiverse ecosystems such as the FSN when we assume traits to be conserved within evolutionary lineages. The NRI and NTI are correlated positively with the soil pH and negatively with the soil’s aluminum concentration, so the bottom plots show higher phylogenetic overdispersion and lower ΠST values than the hillside plots. This pattern can be explained by the greater importance of environmental filters in more acidic soils that form less favorable habitats, while the influence of competition and therefore also the rate of competitive exclusion are higher in the more favorable, less acidic plots.  相似文献   

12.
廉敏  铁军 《生态学报》2020,40(7):2267-2276
分析植物群落谱系结构,可以探究乔木层、灌木层和草本层物种对环境变化的响应情况。以山西陵川南方红豆杉自然保护区鹅耳枥群落为研究对象,采用样方法,分别从不同径级和不同坡向对鹅耳枥群落净谱系亲缘关系指数(Net relatedness index,NRI)和净最近种间亲缘关系指数(Nearest taxon index,NTI)进行研究,探讨了鹅耳枥群落沿着径级梯度形成群落谱系结构特征,进而分析了鹅耳枥群落构建的历史进程。结果表明:(1)该保护区鹅耳枥群落乔木层(26种)、灌木层(32种)和草本层(39种)谱系结构树可分为5个类群、5个类群和4个类群;乔木层(86.67%的样地,下同)和灌木层(73.33%)物种群落谱系结构呈谱系发散格局(NRI0,NTI0),但草本层(86.67%)物种群落谱系结构呈谱系聚集格局(NRI0,NTI0)。(2)鹅耳枥群落乔木层中,DBH在Ⅰ级至Ⅱ级间,NRI指数随着DBH的增大而减小,NTI指数随着DBH的增大而增大;在Ⅱ级至Ⅴ级之间,随着植物DBH增大NRI指数和NTI指数值均呈下降趋势;而且在不同DBH水平上群落NRI和NTI指数均差异显著(P0.05),说明随着径级的增大,群落谱系结构由谱系聚集变为谱系发散。(3)灌木层物种谱系结构在阴坡和阳坡均呈聚集型,乔木层阴坡物种的谱系结构呈发散型(NRI0,NTI0),乔木层阳坡和草本层阴阳坡群落均无法判定群落谱系结构是聚集还是发散。  相似文献   

13.
以芦芽山荷叶坪亚高山草甸为研究对象,共设置150个5 m×5 m草本样方,进行群落生物学调查,对研究区36种草本植物重要值、α多样性指数、谱系多样性指数及其相关性进行研究.结果表明: 荷叶坪亚高山草甸物种多样性总体分布较均匀,边缘地区物种更丰富,呈现“边缘效应”;4个样地的群落谱系结构呈聚集模式,12个样地的群落谱系结构呈分散模式;谱系多样性指数(PD)与Petrick指数、Simpson指数和Shannon指数呈正相关,净亲缘关系指数(NRI)和最近种间亲缘关系指数(NTI)与α物种多样性指数无明显相关性.  相似文献   

14.

Background

The ecological factors contributing to the evolution of tropical vertebrate communities are still poorly understood. Primate communities of the tropical Americas have fewer folivorous but more frugivorous genera than tropical regions of the Old World and especially many more frugivorous genera than Madagascar. Reasons for this phenomenon are largely unexplored. We developed the hypothesis that Neotropical fruits have higher protein concentrations than fruits from Madagascar and that the higher representation of frugivorous genera in the Neotropics is linked to high protein concentrations in fruits. Low fruit protein concentrations in Madagascar would restrict the evolution of frugivores in Malagasy communities.

Methodology/Principal Findings

We reviewed the literature for nitrogen concentrations in fruits from the Neotropics and from Madagascar, and analyzed fruits from an additional six sites in the Neotropics and six sites in Madagascar. Fruits from the Neotropical sites contain significantly more nitrogen than fruits from the Madagascar sites. Nitrogen concentrations in New World fruits are above the concentrations to satisfy nitrogen requirements of primates, while they are at the lower end or below the concentrations to cover primate protein needs in Madagascar.

Conclusions/Significance

Fruits at most sites in the Neotropics contain enough protein to satisfy the protein needs of primates. Thus, selection pressure to develop new adaptations for foods that are difficult to digest (such as leaves) may have been lower in the Neotropics than in Madagascar. The low nitrogen concentrations in fruits from Madagascar may contribute to the almost complete absence of frugivorous primate species on this island.  相似文献   

15.
Understanding the mechanisms maintaining local species richness is a major topic in tropical ecology. In ecological communities of Madagascar, primates represent a major part of mammalian diversity and, thus, are a suitable taxon to study these mechanisms. Previous research suggested that ecological niche differentiation facilitates the coexistence of lemurs. However, detailed data on all species making up diverse local primate assemblages is rarely available, hampering community‐wide tests of niche differentiation among Malagasy mammals. Here, we took an indirect approach and used stable isotopes as long‐term indicators of individuals' diets to answer the question of whether trophic patterns and food‐related mechanisms stabilize coexistence in a species‐rich lemur community. We analyzed stable carbon and nitrogen isotopes in hair collected from eight syntopic lemurs in Kirindy Forest. We found that lemur species were well separated into trophic niches and ranged over two trophic levels. Furthermore, species were densely packed in isotopic space suggesting that past competitive interactions between species are a major structuring force of this dry forest lemur community. Results of other comparative studies on primates and our findings underline that—in contrast to communities worldwide—the structure and composition of lemur communities follow predictions of ecological niche theory. Patterns of competitive interactions might be more clearly revealed in Malagasy primate communities than elsewhere because lemurs represent a large fraction of ecologically interacting species in these communities. The pronounced trophic niche differentiation among lemurs is most likely due to intense competition in the past as is characteristic for adaptive radiations. Am J Phys Anthropol 153:249–259, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Nonconvergence in the evolution of primate life history and socio-ecology   总被引:3,自引:0,他引:3  
The goal of this study was to investigate the extent of convergence in four basic life history and socio-ecological traits among the primates of Africa, Asia, South America and Madagascar. The convergence hypothesis predicts that similar abiotic conditions should result in similar adaptations in independent taxa. Because primates offer a unique opportunity among mammals to examine adaptations of independent groups to tropical environments, we collected information on body mass, activity pattern, diet and group size from all genera for quantitative tests of this hypothesis. We revealed a number of qualitative and quantitative differences among the four primate groups, indicating a lack of convergence in these basic aspects of life history and socio-ecology. Our analyses demonstrated that New World primates are on average significantly smaller than primates in other regions and characterized by a lack of species larger than about 10 kg. Madagascar harbours significantly more nocturnal species than the other regions and is home to all but one of the primates with irregular bursts of activity. Asia is the only region with strictly faunivorous primates, but lacks primarily gummivorous ones. The Neotropics are characterized by the absence of primarily folivorous primates. Solitary species are not represented in the New World, whereas solitary and pair-living species make up the majority of Malagasy primates. Lemurs live in significantly smaller groups than other primates, even after controlling for differences in body size. The lack of convergence among the major primate groups is neither primarily due to phylogenetic constraints as a result of founder effects, nor can it be sufficiently explained as a passive consequence of body size differences. However, because the role of adaptive forces, such as interspecific competition, predation or phenology in shaping the observed differences is largely unexplored, we conclude that it is premature to discard the convergence hypothesis without further tests.  相似文献   

17.
Brody Sandel 《Ecography》2018,41(5):837-844
Phylogenetic diversity indices are widely used to characterize the structure and diversity of ecological communities. Most indices are based on a metric that is expected to vary with species richness, so they are standardized to remove this richness‐dependence. With this standardization, values of 0 are consistent with random phylogenetic structure, while phylogenetic clustering is associated with either negative or positive values (depending on the index). One common interpretation of phylogenetic clustering is that it indicates some combination of environmental and biological filtering that restricts the species that can be present in a community. Increasingly, studies are comparing phylogenetic indices along environmental gradients to infer differences in the factors structuring communities. This comparison implicitly assumes that index values are comparable among communities with different numbers of species. Using a set of simulations, I show here that this assumption is incorrect. Holding the strength of filtering constant, communities composed of more species show larger absolute index values. This problem is most pronounced when the environmental filter favors a moderate‐sized clade strongly over others and when using the net relatedness index (NRI) to measure clustering. This bias potentially casts doubt on studies studying phylogenetic index patterns along gradients where richness also varies. Fortunately, the arising generality that more stressful environments have lower species richness and stronger clustering is opposite to this bias and therefore robust. I also show that a simple rarefaction can remove the richness‐dependence of these indices, at the expense of increased error.  相似文献   

18.
Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine the patterns and relationships among plant, mammal, and bird diversity in Madagascar, a hotspot of biodiversity and endemism, across taxonomic, phylogenetic, and functional axes. We found that plant community diversity and structure are shaped by geography and climate, and have significant influences on the taxonomic, phylogenetic and functional diversity of mammals and birds. Patterns of primate diversity, in particular, were strongly correlated with patterns of plant diversity. Furthermore, our findings suggest that plant and animal communities could become more phylogenetically and functionally clustered in the future, leading to homogenization of the flora and fauna. These results underscore the importance and need of multi‐taxon approaches to conservation, given that even small threats to plant diversity can have significant cascading effects on mammalian and avian community diversity, structure, and function.  相似文献   

19.
Previous studies of meta-analyses found significantly positive correlations between primate species richness and rainfall for Africa, Madagascar and the Neotropics, with the exception of Asia, leaving the open question whether that anomaly is the result of sampling bias, biogeography, or some other factor. This study re-examines the question using modelled data, with primate species richness data from the Southeast Asian Mammals Databank and rainfall data from the Climatic Research Unit. Data processing with Geographical Information Systems resulted in 390 sample points. Reduced major axis and ordinary least squares regressions were employed to examine the relationship for six regions, including the whole study area of Southeast Asia, and the subareas of Huxley West, Huxley East, Mainland Southeast Asia, Borneo, and Sumatra. The results showed a significant positive relationship between primate species richness and mean annual rainfall for Southeast Asia (r = 0.26, P<0.001). Comparing the results for the large islands and Mainland Southeast Asia showed that Sumatra had the highest correlation (r = 0.58; P<0.05). After controlling for the major biogeographic effect associated with Huxley’s Line, our results showed that primate species richness is positively associated with mean annual rainfall in Southeast Asia. Our findings contrast to prior studies of meta-analyses that showed no relationship between rainfall and primate species richness in Asia, and thereby bring Asia into agreement with results showing significant positive correlations between rainfall and primate species richness everywhere else in the world. The inference is that previous anomalous results for Asia were result of sampling bias in the meta-analysis.  相似文献   

20.
Bird species richness is mediated by local, regional, and historical factors, for example, competition, environmental heterogeneity, contemporary, and historical climate. Here, we related bird species richness with phylogenetic relatedness of bird assemblages, plant species richness, topography, contemporary climate, and glacial‐interglacial climate change to investigate the relative importance of these factors. This study was conducted in Inner Mongolia, an arid and semiarid region with diverse vegetation types and strong species richness gradients. The following associated variables were included as follows: phylogenetic relatedness of bird assemblages (Net Relatedness Index, NRI), plant species richness, altitudinal range, contemporary climate (mean annual temperature and precipitation, MAT and MAP), and contemporary‐Last Glacial Maximum (LGM) change in climate (change in MAT and change in MAP). Ordinary least squares linear, simultaneous autoregressive linear, and Random Forest models were used to assess the associations between these variables and bird species richness across this region. We found that bird species richness was correlated negatively with NRI and positively with plant species richness and altitudinal range, with no significant correlations with contemporary climate and glacial–interglacial climate change. The six best combinations of variables ranked by Random Forest models consistently included NRI, plant species richness, and contemporary‐LGM change in MAT. Our results suggest important roles of local ecological factors in shaping the distribution of bird species richness across this semiarid region. Our findings highlight the potential importance of these local ecological factors, for example, environmental heterogeneity, habitat filtering, and biotic interactions, in biodiversity maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号