首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
2.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

3.
4.
Abstract: Stable isotope studies of food webs in floodplains, large rivers, mangroves, and seagrasses have shown that, although a large proportion of the biomass may come from higher plants, microalgae provide a disproportionate amount of carbon assimilated by metazoan consumers. Evidence is building that this may also be the case for streams, especially those in the tropics. At the level of individual consumer species we also see that the apparent diet may not be reflected in the carbon assimilated. Tropical streams commonly have omnivore‐detritivore species that potentially show this phenomenon. We tested these concepts in four moderately shaded sites in a stream in well‐preserved Atlantic rainforest at Ilha Grande, Rio de Janeiro. We sampled aquatic insects, shrimps and fish as well as potential terrestrial and aquatic primary food sources. Carbon stocks from terrestrial sources predominated over carbon of algal origin (>99% of total). The primary sources of carbon showed distinctly different isotopic signatures: terrestrial sources had δ13C values close to ?30‰, microalgae were ?20‰ and macroalgae were ?25‰. All fauna had δ13C values consistent with a carbon source derived from microalgae. Baetid mayflies and atyid shrimps exert a strong grazing pressure on periphyton and organic sediments but appear to assimilate predominantly microalgae. The palaemonid shrimp Macrobrachium olfersi also ingests large amounts of detritus of terrestrial origin, but apparently assimilates animal prey with algal δ13C signatures. These results support the growing view that tropical stream food chains are primarily algal based.  相似文献   

5.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used for more than two decades in analyses of food web structure. The utility of isotope ratio measurements is based on the observation that consumer δ13C values are similar (<1‰ difference) to those of their diet, while consumer δ15N values are about 3‰ higher than those of their diet. The technique has been applied most often to aquatic and aboveground terrestrial food webs. However, few isotope studies have examined terrestrial food web structure that includes both above- and belowground (detrital) components. Here, we review factors that may influence isotopic signatures of terrestrial consumers in above- and belowground systems. In particular, we emphasize variations in δ13C and δ15N in belowground systems, e.g., enrichment of 13C and 15N in soil organic matter (likely related to soil microbial metabolism). These enrichments should be associated with the high 13C (~3‰) enrichment in belowground consumers relative to litter and soil organic matter and with the large variation in δ15N (~6‰) of the consumers. Because such enrichment and variation are much greater than the trophic enrichment generally used to estimate consumer trophic positions, and because many general predators are considered dependent on energy and material flows from belowground, the isotopic variation in belowground systems should be taken into account in δ13C and δ15N analyses of terrestrial food webs. Meanwhile, by measuring the δ13C of key predators, the linkage between above- and belowground systems could be estimated based on observed differences in δ13C of primary producers, detritivores and predators. Furthermore, radiocarbon (14C) measurements will allow the direct estimation of the dependence of predators on the belowground systems.  相似文献   

6.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

7.
SUMMARY 1. Transfer of carbon from freshwater to terrestrial ecosystems can occur through predation on adult aquatic insects, but the significance of this trophic pathway to the energetics of riparian communities is poorly understood. We used stable isotopes of carbon and nitrogen to explore linkages between aquatic insect production and the nutrition of web‐building and free‐living spiders alongside two streams in the North Island of New Zealand. 2. δ13C values for riparian tree leaves (means for each site = ?32.2 and ?30.3‰) were distinct from those of lichens collected from stream channel rocks and instream algae, both of which were similar (?23.4 to ?22.4‰). δ15N values for leaves were similar at both sites (?3.4 and ?2.7‰), but algae were considerably more depleted in δ15N atonesite suggesting significant differences in instream nitrogen sources between the twostreams. 3. Isotope values for potential aquatic prey of spiders indicated that aquatic algal production was their primary carbon source at both sites. Terrestrial invertebrates collected and assumed to be potential prey reflected a range of carbon sources and represented several trophic levels. 4. At one site, δ13C values indicated a primarily algae‐aquatic insect pathway of carbon transfer to both web‐building and free‐living spider guilds. The other site appeared to have a primarily terrestrial carbon pathway for the free‐living spider guild, and a mixed aquatic‐terrestrial pathway for the web‐building guild. 5. Overall, web‐building spiders were estimated to obtain around 61% of their body carbon from aquatic production compared with 55% for free‐living spiders. Our findings suggest that consumption of prey derived from aquatic sources can provide significant nutrition for spiders living along some stream channels. This pathway may represent an important feedback mechanism contributing to the energetics of riparian communities at sites where aquatic insect production is high.  相似文献   

8.
Alpine streams can exhibit naturally high levels of flow intermittency. However, how flow intermittency in alpine streams affects ecosystem functions such as food web trophic structure is virtually unknown. Here, we characterized the trophic diversity of aquatic food webs in 28 headwater streams of the Val Roseg, a glacierized alpine catchment. We compared stable isotope (δ13C and δ15N) trophic indices to high temporal resolution data on flow intermittency. Overall trophic diversity, food chain length and diversity of basal resource use did not differ to a large extent across streams. In contrast, gradient and mixing model analysis indicated that primary consumers assimilated proportionally more periphyton and less allochthonous organic matter in more intermittent streams. Higher coarse particulate organic matter (CPOM) C:N ratios were an additional driver of changes in macroinvertebrate diets. These results indicate that the trophic base of stream food webs shifts away from terrestrial organic matter to autochthonous organic matter as flow intermittency increases, most likely due to reduced CPOM conditioning in dry streams. This study highlights the significant, yet gradual shifts in ecosystem function that occur as streamflow becomes more intermittent in alpine streams. As alpine streams become more intermittent, identifying which functional changes occur via gradual as opposed to threshold responses is likely to be vitally important to their management and conservation.  相似文献   

9.
Stream food web function is often assessed using carbon stable isotope assessments of the relative contribution of autochthonous and allochthonous sources of organic matter to consumer diets. As a result, variability in source signatures can strongly influence the assessment of carbon flows. To examine the implications of temporal source variability on food web interpretations, benthic algal δ13C signatures were measured over 8 weeks in five streams in subtropical Queensland, Australia. All food webs were largely driven by benthic algal carbon; however, substantial week-to-week variation in benthic algal δ13C signatures modified the calculated contributions of algae to consumer diets, with differences in autochthonous contributions of up to 11% between weeks. In addition, variable algal signatures led to many occasions in which the δ13C signatures of some consumers was beyond the range of available sources, meaning the mixing model analyses did not have a valid solution. Together, these findings suggest that temporal variability in algal δ13C signatures can strongly influence the interpretation of carbon flows in stream food webs. Future food web studies should assess the temporal variability of sources prior to sampling consumers, in order to characterise end member signatures and their relevance to consumers at the time of collection.  相似文献   

10.
Even though the suitability of macrophytes to act as a carbon source to food webs has been questioned by some studies, some others indicate that macrophyte-derived carbon may play an important role in the trophic transfer of organic matter in the food web of shallow lakes. To evaluate the importance of macrophytes to food webs, we collected primary producers—macrophytes and periphyton—and consumers from 19 South American shallow lakes and analyzed their carbon stable isotopes composition (δ13C). Despite the diversity of inorganic carbon sources available in our study lakes, the macrophytes’ δ13C signatures showed a clear bimodal distribution: 13C-depleted and 13C-enriched, averaging at ?27.2 and ?13.5‰, respectively. We argue that the use of either CO2 or HCO3 ? by the macrophytes largely caused the bimodal pattern in δ13C signals. The contribution of carbon from macrophytes to the lake’s food webs was not straightforward in most of the lakes because the macrophytes’ isotopic composition was quite similar to the isotopic composition of periphyton, phytoplankton, and terrestrial carbon. However, in some lakes where the macrophytes had a distinct isotopic signature, our data suggest that macrophytes can represent an important carbon source to shallow lake food webs.  相似文献   

11.
1. It is increasingly realised that aquatic and terrestrial systems are closely linked. We investigated stable isotope variations in Odonata species, putative prey and basal resources of aquatic and terrestrial systems of northern Mongolia during summer. 2. In permanent ponds, δ13C values of Odonata larvae were distinctly lower than those of putative prey, suggesting that body tissue comprised largely of carbon originating from isotopically light carbon sources. Presumably, prey consumed during autumn and winter when carbon is internally recycled and/or methanotrophic bacteria form an important basal resource of the food web. In contrast, in a temporary pond, δ13C values of Odonata larvae were similar to those of putative prey, indicating that their body carbon originated mainly from prey species present. 3. Changes in δ15N and δ13C values between larvae and adults were species specific and reflected differential replacement of the larval isotopic signature by the terrestrial diet of adult Odonata. The replacement was more pronounced in Odonata species of permanent ponds than in those of the temporary pond, where larvae hatched later in the year. Replacement of larval carbon varied between tissues, with wings representing the larval isotopic signature whereas thoracic muscles and eggs reflected the δ15N and δ13C values of the terrestrial diet of adults. 4. The results suggest that because of their long larval development, Odonata species of permanent ponds carry the larval signature, which is partly replaced during their terrestrial life. Terrestrial prey forms the basis for egg production and thus the next generation of aquatic larvae. In temporary ponds, in contrast, Odonata species rely on prey from a single season, engage in a prolonged aquatic phase and hatch later, leaving less time to acquire terrestrial prey resources for offspring production. Stable isotope analysis provided important insights into the food webs of the waterbodies and their relationship to the terrestrial system.  相似文献   

12.
13.
1. We assessed the impacts of deforestation on the energy base of headwater food webs in seven headwater streams in the Upper Chattahoochee basin, GA, U.S.A where percentage forest in catchments ranged from 82 to 96%. We measured terrestrial organic matter standing crop and determined consumer (crayfish and insectivorous fish) dependence on terrestrial versus aquatic energy sources via gut content and stable isotope analyses. 2. Standing crop of coarse particulate organic matter (CPOM) declined with deforestation at large scales (i.e. catchment deforestation and riparian deforestation at the entire stream network scale). Terrestrial plant matter, the dominant component of crayfish guts, declined in crayfish guts with reductions in CPOM standing crop and with deforestation. 3. Crayfish and insectivorous fish δ13C showed enrichment trends with deforestation, indicating isotopic divergence from CPOM, the most 13C‐depleted basal resource, with reductions in catchment and riparian forest cover. Crayfish δ13C also exhibited enrichment with decreased instream CPOM standing crop. 4. A concentration‐dependent mixing model was used to calculate the relative dependence of crayfish and fish on terrestrial versus aquatic basal resources. Results suggested that both allochthonous CPOM and autochthonous production were important basal resources. Consumer dependence on CPOM decreased with reductions in canopy cover. 5. Our data suggest the importance of forest cover to headwater food webs at multiple scales, and that relatively low levels of riparian deforestation along headwater streams can lead to reductions in stream food web dependence on terrestrial subsidies.  相似文献   

14.
15.
Stable isotope ratios (δ15N and δ13C) and diet of three fish species, Stegastes nigricans, Chaetodon citrinellus and Epinephelus merra, were analyzed on the fringing coral reefs of two bays that are differentially exposed to river runoff on Moorea Island, French Polynesia. S. nigricans and C. citrinellus relied mostly on turf algae and presented similar trophic levels and δ15N values, whereas E. merra fed on large invertebrates (crabs and shrimps) and had higher trophic levels and δ15N values. Discrepancies existed between stomach content and stable isotope analyses for the relative importance of food items. Bayesian mixing models indicated that sedimented organic matter was also an important additional food for S. nigricans and C. citrinellus, and fishes for E. merra. The main sources of organic matter involved in the food webs ending with these species were algal turfs and surface sediments, while water particulate organic matter was barely used. Significant spatial differences in C and N isotopic ratios for sources and fishes were found within and between bays. Lower 13C and higher 15N values were observed for various compartments of the studied trophic network at the end of each bay than at the entrance. Differences were observed between bays, with organic sources and consumers being, on average, slightly more 13C-depleted and 15N-enriched in Cook’s Bay than in Opunohu Bay, linked with a higher mean annual flow of the river at Cook’s Bay. Our results suggest that rivers bring continental material into these two bays, which is partly incorporated into the food webs of fringing coral reefs at least close to river mouths. Thus, continental inputs can influence the transfer of organic matter within coral reef food webs depending on the diet of organisms.  相似文献   

16.
17.
  1. Glacial retreat, accompanied by shifts in riparian vegetation and glacier meltwater inputs, alters the energy supply and trophic structure of alpine stream food webs. Our goal in this study was to enhance understanding of dietary niches of macroinvertebrates inhabiting different alpine streams with contrasting glacial and non‐glacial (groundwater, precipitation, snowmelt) water inputs in conjunction with seasonal and habitat‐specific variation in basal resource availability.
  2. We measured a range of stream physico‐chemical attributes as well as carbon and nitrogen isotopes (δ13C, δ15N) of macroinvertebrates and primary food sources at seven sites across seasons within a Swiss glaciated catchment (Val Roseg) undergoing rapid glacial retreat (1–2 km between 1997 and 2014). Sampling sites corresponded to streams used in a previous (1997/1998) study within the same alpine catchment.
  3. Physico‐chemical attributes showed wide variation in environmental conditions across streams and seasons. Significant correlation among physico‐chemical proxies of glacier meltwater (phosphate‐P, total inorganic carbon, conductivity, turbidity) and macroinvertebrate δ13C, δ15N, and size‐corrected standard ellipse area (a proxy for feeding niche width) values showed that the extent of glacial water input shapes the energy base among alpine streams. Feeding niche differences among common alpine stream insect taxa (Chironomidae, Baetidae, Heptageniidae) were not significant, indicating that these organisms probably are plastic in feeding behaviour, opportunistically relying on food resources available in a particular stream and season.
  4. Seasonal trends in macroinvertebrate δ13C largely followed patterns in periphyton δ13C values, indicating that autochthonous resources were the main consumer energy source within the stream network, as shown previously. The overall range in macroinvertebrate δ13C (?33.5 to ?18.4‰) and δ15N (?6.9 to 6.7‰) values also corresponded to values measured in the previous study, suggesting that macroinvertebrates altered diets in line with changes in environmental conditions and food resources during a period of rapid glacial retreat. Our results suggest that environmental changes brought on by rapid glacial retreat have not yet caused a profound change in the trophic structure within these fluvial networks.
  相似文献   

18.
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier‐marine habitats by developing a multi‐trophic level Bayesian three‐isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial‐marine habitats. We also compared isotope ratios between glacial‐marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic‐level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier‐nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest‐nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C‐age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C‐age to modern). Thus terrestrial‐derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial‐marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate‐driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska.  相似文献   

19.
Climate-mediated changes in the phenology of Arctic sea ice and primary production may alter benthic food webs that sustain populations of Pacific walruses (Odobenus rosmarus divergens) and bearded seals (Erignathus barbatus). Interspecific resource competition could place an additional strain on ice-associated marine mammals already facing loss of sea ice habitat. Using fatty acid (FA) profiles, FA trophic markers, and FA stable carbon isotope analyses, we found that walruses and bearded seals partitioned food resources in 2009–2011. Interspecific differences in FA profiles were largely driven by variation in non-methylene FAs, which are markers of benthic invertebrate prey taxa, indicating varying consumption of specific benthic prey. We used Bayesian multi-source FA stable isotope mixing models to estimate the proportional contributions of particulate organic matter (POM) from sympagic (ice algal), pelagic, and benthic sources to these apex predators. Proportional contributions of FAs to walruses and bearded seals from benthic POM sources were high [44 (17–67)% and 62 (38–83)%, respectively] relative to other sources of POM. Walruses also obtained considerable contributions of FAs from pelagic POM sources [51 (32–73)%]. Comparison of δ13C values of algal FAs from walruses and bearded seals to those from benthic prey from different feeding groups from the Chukchi and Bering seas revealed that different trophic pathways sustained walruses and bearded seals. Our findings suggest that (1) resource partitioning may mitigate interspecific competition, and (2) climate change impacts on Arctic food webs may elicit species-specific responses in these high trophic level consumers.  相似文献   

20.
Stable‐isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food‐web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13C and δ15N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio‐temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food‐web integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号