首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of methane in boreal forest soils: a comparison of seven measures   总被引:8,自引:4,他引:8  
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m–2 d–1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m–2 d–1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.  相似文献   

2.
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition.  相似文献   

3.
通过室内培养实验,研究了外源氮、硫添加对闽江河口湿地土壤CH_4产生/氧化速率以及土壤理化性质的短期影响。NH_4Cl(N1)和NH_4NO_3(N3)处理在各培养阶段均显著促进土壤CH_4产生速率(P0.05),较对照分别提高136.70%和136.55%;NH_4Cl+K_2SO_4(NS1)和NH_4NO_3+K_2SO_4(NS3)处理在培养第3、6、12、15和18天均显著促进了CH_4产生速率(P0.05)。KNO_3(N2)、K_2SO_4(S)处理在不同培养时间对CH_4产生速率影响均不显著(P0.05);KNO_3+K_2SO_4(NS2)处理除在第21天外(P0.05),其他时间影响均不显著(P0.05)。N2、N3、NS2和NS3处理均显著促进了土壤CH_4氧化速率(P0.05),平均CH4氧化速率较CK分别提高了145.30%、142.93%、139.48%和112.68%。整体而言,不同添加处理并没有显著改变湿地土壤CH_4产生/氧化速率的时间变化规律,各处理均表现为随培养时间先增加而后逐渐降低。短期培养结束后,土壤可溶性有机碳(DOC)、电导率、p H值在不同处理间均不存在显著差异(P0.05);土壤NH+4-N含量在N1、N3、NS1和NS3处理下,NO_3~--N含量在N2、N3、NS2和NS3处理下,SO_4~(2-)含量在S、NS1、NS2和NS3处理下均显著高于对照处理(P0.05)。相关分析显示,DOC、铵态氮(NH+4-N)和硝态氮(NO_3~--N)是氮、硫添加处理下影响闽江河口湿地土壤CH_4产生/氧化速率短期变化的主要控制因素。  相似文献   

4.
5.
Nitrogen (N) deposition is known to increase carbon (C) sequestration in N-limited boreal forests. However, the long-term effects of N deposition on ecosystem carbon fluxes have been rarely investigated in old-growth boreal forests. Here we show that decade-long experimental N additions significantly stimulated net primary production (NPP) but the effect decreased with increasing N loads. The effect on soil heterotrophic respiration (Rh) shifted from a stimulation at low-level N additions to an inhibition at higher levels of N additions. Consequently, low-level N additions resulted in a neutral effect on net ecosystem productivity (NEP), due to a comparable stimulating effect on NPP and Rh, while NEP was increased by high-level N additions. Moreover, we found nonlinear temporal responses of NPP, Rh and NEP to low-level N additions. Our findings imply that actual N deposition in boreal forests likely exerts a minor contribution to their soil C storage.  相似文献   

6.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

7.
Diurnal variation in the rate of methane emission and its relation to water table depth and macro climate was studied in several plant communities within an acid,Sphagnum dominated, mixed mire in Northern Sweden. Provided that diurnal variation in solar radiation and air temperature occurred, methane fluxes differed during day and night. Diurnal patterns in methane emission rates were found to differ among mire plant communities. In relatively dry plant communities (ridges, minerotrophic lawn), the average nighttime emission rates were 2–3 times higher than the daytime rates during the two periods with high diurnal variation in solar radiation and air temperature. Methane emission was significantly (p < 0.05) related to solar radiation and soil temperature at depths of 5 and 10 cm at all sampling points in the dry plant communities. In the wetter plant communities, no significant difference between daytime and nighttime average methane emission rates were found even though methane emissions were significantly related with radiation and soil temperature at approximately 70% of the sampling points. The increased emission rate for methane at night in the comparatively dry plant communities was probably caused by an inhibition of methane oxidation, owing to the lower nighttime temperatures or to a delay in the supply of root-exuded substrate for the anaerobic bacteria, or by both. The pattern observed in the wet plant communities indicated that methane production were positively related either to soil temperature or light-regulated root exudation.  相似文献   

8.
9.
10.
Nitrogen (N) and sulfur (S) play important roles in peatlands, through their influence on plant production and peat decomposition rates and on redox reactions, respectively, and peatlands contain substantial stores of these two elements. Using peat N and S concentrations and dry bulk density and 210Pb dating, we determined the rates of N and S accumulation over the past 150 years in hummock and hollow profiles from 23 ombrotrophic bogs in eastern Canada. Concentrations of N and S averaged 0.80% and 0.18%, respectively, generally increased with depth in the profile and there was a weak but significant correlation between N and S concentrations. Rates of N and S accumulation over the past 50–150 years ranged from 0.5 to 4.8 g N m?2 yr?1 and from 0.1 to 0.9 g S m?2 yr?1. There were significant but weak correlations between C, N and S accumulation rates over 50‐, 100‐ and 150‐year periods. Over the last 50 years, rates of S accumulation showed little differentiation between hummocks and hollows, whereas the pattern for N accumulation was more variable (hummock minus hollow rate ranged from ?1 to +1.5 g N m?2 yr?1), with hummocks generally having a larger N accumulation rate, correlated with the rate of carbon (C) accumulation. There was a modest but significant positive correlation between 50‐year rates of N accumulation and wet atmospheric deposition of N measured between 1990 and 1996, with accumulation rates about four times that of wet deposition. The difference between deposition and accumulation of N is attributed to organic N deposition, dry deposition and N2 fixation. A weaker, but still significant, correlation was observed between 50‐year S accumulation and 1990–1996 wet atmospheric S deposition, with about 75% of the deposited S accumulating in the peat. A laboratory experiment with peat cores exposed to varying water table position and simulated N and S deposition, showed that on average 87% and 98% of the deposited NH4+ and NO3?, respectively, and 58% of the deposited S were retained in the vegetation and unsaturated zone of the cores, supporting the results from the field study.  相似文献   

11.
森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展   总被引:3,自引:0,他引:3  
森林土壤甲烷(CH4)吸收在生态系统碳、氮循环和碳平衡研究中具有重要作用。论述了森林土壤CH4的产生和消耗过程及其主控因子,有效氮不同的森林土壤CH4吸收对氮素输入的响应差异及其驱动机制,并且明确了现有研究的不足和未来研究的重点。研究表明:大气氮沉降输入倾向于抑制富氮森林土壤的CH4吸收,而对贫氮森林土壤CH4吸收具有显著的促进作用,其内在的氮素调控机制至今尚不明确。主要的原因是过去通过高剂量施氮试验所得出的理论难以准确地解释低水平氮沉降情景下森林土壤CH4吸收过程,有关森林土壤CH4吸收对大气氮沉降响应的微生物学机理也缺乏系统性研究。未来研究的重点是探讨森林土壤CH4物理扩散和净吸收过程对施氮类型、剂量的短期与长期响应,量化深层土壤CH4累积和消耗对表层土壤CH4吸收的贡献,揭示森林土壤CH4吸收对增氮响应的物理学与生物化学机制。另外,研究森林土壤甲烷氧化菌群落活性、结构对施氮类型和剂量的响应,阐明土壤CH4吸收与甲烷氧化菌群落组成的内在联系,有助于深入揭示森林土壤CH4吸收对增氮响应的微生物学机制。  相似文献   

12.
Natural wetlands release about 20% of global emissions of CH4, an effective greenhouse gas contributing to the total radiative forcing. Thus, changes in the carbon cycle in wetlands could have significant impacts on climate. The effect of raised supply of CO2 or NH4NO3 on the annual CH4 efflux from the lawn of a boreal oligotrophic mire was investigated over two years. Ten study plots were enclosed with mini‐FACE rings, five vented with CO2‐enriched air and the other five with ambient air. In addition, five plots were sprayed with NH4NO3 so that the cumulative addition of N was 3 g m?2 y?1; and five plots were controls. The CO2 enrichment (target concentration 560 ppmv) increased CH4 efflux about 30–40%, but half of this increase seemed to be caused by the air‐blowing system. The increasing atmospheric concentration of CO2 would promote CH4 release in boreal mires, but the increase in CH4 efflux would be clearly smaller than that reported in studies made in temperate or subtropical temperature conditions. Addition of N enhanced the annual release of CH4 only slightly. At least over the short‐term, the increase in N deposition would have little effect on CH4 effluxes. The increase in CH4 release would probably increase radiative forcing and thus accelerate climate change. However, CH4 effluxes are only a small part in the whole matter balance in mires and thus further studies are needed to define the net effects of raised supply of CO2 or N for carbon accumulation, trace gas fluxes and radiative forcing.  相似文献   

13.
Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary   总被引:1,自引:1,他引:0  
Seasonal variation of dimethylsulfide (DMS) and methane thiol (MSH) concentrations in sediment porewater was determined in a Danish estuary. Dimethylsulfide (DMDS) was never found. Detectable DMS levels of up to 0.1 M were found only in the summer and only within the upper 5 cm of the sediment. The DMS accumulation was probably associated with decomposing fragments of macro-algae in the surface layer. Significant MSH accumulation of up to 1 M was found only in the deep, CH4-rich sediment below the SO4 2- zone. With depth, a detectable MSH level could thus be observed below the 1 mM SO4 2--isopleth which also marked the SO4 2--CH4 transition. The transition zone was located deeper in the sediment in winter (20–25 cm depth) than in summer (5–10 cm depth). The absence of MSH in the SO4 2- zone could be due to rapid utilization of the compound by SO4 2--reducing bacteria. A possible involvement of MSH in anaerobic CH4 oxidation at the transition zone is discussed; CH4 and sulfide (HS- form, pH 7) are proposed to form MSH and H2 which in turn may be metabolized by, e.g. SO4 2--reducing bacteria.  相似文献   

14.
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates.  相似文献   

15.
The ability to predict the effects of climate change on trace gas fluxes requires a knowledge of microbial temperature responses. However, the response of a microbial community to temperature in a given substrate may be complicated by its thermal history. To examine the effect of sequentially changing temperature on methane and carbon dioxide production in different peat types, we incubated anaerobic peat samples from 3 types of northern peatlands, a bog, a sedge fen and a cedar swamp, in both rising and falling temperature regimes. Graphic and statistical comparisons of the different temperature regimes suggest hysteresis in microbial response to temperature, although the absolute rates at any given temperature often did not differ. Where regressions for temperature response (Arrhenius plots) were significant, they generally differed between temperature regimes. The greatest differences among treatments occurred during the first half of the 40-d incubation. Increases in carbon dioxide production were similar across all peat types, but methanogenesis varied widely: methane production was uniformly low in the bog peat but increased sharply with temperature in the other two peat types. The complicating effect of history or chronology on substrate responses to environmental stimuli may restrain our ability to model the responses of complex systems to changing conditions.  相似文献   

16.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

17.
18.
以重庆市近郊中梁山槽谷为研究区,利用气象站和沉降仪获取2017年5月-2018年4月的大气无机氮、硫沉降数据和降水δ15N-NO3-、δ18O-NO3-和δ34S-SO42-、δ18O-SO42-数据,通过离子浓度比值、同位素值和气团后向轨迹探讨了研究区大气中氮、硫沉降变化特征及其来源。结果表明:(1)大气DIN总沉降量为19.99 kg/hm2,干、湿沉降量分别占11%和89%;大气S总沉降量为32.62 kg/hm2,干、湿沉降量分别占13%和87%。大气氮、硫湿沉降量与降水量均呈正相关(n=12,P < 0.01),氮、硫干湿沉降量具有明显的季节差异。(2)降水NH4+-N/NO3--N比值介于0.45-2.2之间,雨季(5-10月)NH4+-N/NO3--N>1,旱季(11-次年4月)NH4+-N/NO3--N<1,表明雨季氮主要来源于农业源,旱季来源于工业和交通源;降水NO3-/SO42-比值介于0.1-1.25之间,平均值为0.63,表明硫来源以固定污染源(燃煤)为主。(3)大气降水δ15N-NO3-、δ18O-NO3-值分别为-3.8‰-3.9‰(平均值为0.4‰±2.6‰)和58.7‰-98.7‰(平均值为76.1‰±14.3‰),夏季偏负,冬季偏正;降水δ34S-SO42-和δ18O-SO42-变化范围分别为1.3‰-3.2‰(平均值为2.3‰±1‰)和5.3‰-8.5‰(平均值为7.1‰±1.6‰),大气降水中NO3-和SO42-主要来源于当地的化石燃料燃烧,同时受到周边污染物的远距离传输影响。(4)气团后向轨迹表明影响研究区氮、硫干湿沉降来源的主要因素是东亚季风,北东-南西走向的川东平行岭谷大地貌格局加剧了季风的影响。  相似文献   

19.
Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
以荒漠草原凋落物为研究对象,通过设置自然降雨(CK)、增雨30%(W)和减雨30%(R) 3种水分处理和0 (N0)、30(N30)、50 (N50)和100 kg hm~(-2) a~(-1)(N100)4种氮素(NH_4NO_3)水平处理,用分解袋法,研究内蒙古短花针茅荒漠草原短花针茅(Stipa breviflora)、冷蒿(Artemisia frigida)、无芒隐子草(Cleistogenes songorica)和木地肤(Kochia prostrata)凋落物分解过程,旨在阐明荒漠草原凋落物分解过程及其对氮沉降和降雨变化的响应特征,为荒漠草原生态系统物质循环过程响应气候变化研究提供基础数据。结果表明:1)经过270 d分解后,短花针茅、冷蒿、木地肤和无芒隐子草干物质残留率分别为69.95%—78.67%、68.89%—79.89%、64.68%—79.23%、66.89%—79.38%,分解速率为木地肤无芒隐子草冷蒿短花针茅。2)氮沉降和降雨对短花针茅和冷蒿凋落物分解速率产生显著影响(P0.05),其交互作用对这两种凋落物分解速率不显著(P0.05)。氮沉降和降雨以及交互作用均对无芒隐子草和木地肤凋落物分解速率产生显著影响(P0.05)。3)单一水分或氮素的添加均提高土壤微生物量碳氮含量,而水氮交互作用下更为显著。4)凋落物分解速率受生物及非生物因子的影响,相关分析表明:冷蒿、无芒隐子草、木地肤与土壤微生物量碳呈极显著正相关(P0.01);冷蒿、木地肤、短花针茅与土壤微生物量氮呈极显著正相关(P0.01);木地肤和短花针茅与土壤含水量呈极显著正相关(P0.01);冷蒿、木地肤、短花针茅与地上生物量呈极显著正相关(P0.01)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号