首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Quantifying spatial genetic structure can reveal the relative influences of contemporary and historic factors underlying localized and regional patterns of genetic diversity and gene flow – important considerations for the development of effective conservation efforts. Using 10 polymorphic microsatellite loci, we characterize genetic variation among populations across the range of the Eastern Sand Darter (Ammocrypta pellucida), a small riverine percid that is highly dependent on sandy substrate microhabitats. We tested for fine scale, regional, and historic patterns of genetic structure. As expected, significant differentiation was detected among rivers within drainages and among drainages. At finer scales, an unexpected lack of within‐river genetic structure among fragmented sandy microhabitats suggests that stratified dispersal resulting from unstable sand bar habitat degradation (natural and anthropogenic) may preclude substantial genetic differentiation within rivers. Among‐drainage genetic structure indicates that postglacial (14 kya) drainage connectivity continues to influence contemporary genetic structure among Eastern Sand Darter populations in southern Ontario. These results provide an unexpected contrast to other benthic riverine fish in the Great Lakes drainage and suggest that habitat‐specific fishes, such as the Eastern Sand Darter, can evolve dispersal strategies that overcome fragmented and temporally unstable habitats.  相似文献   

2.
Changes in the isotopic composition (δ13C and δ15N) in biofilm, macro‐invertebrates and resident salmonids were used to characterize temporal dynamics of marine derived nutrients (MDNs) incorporation between stream reaches with and without MDN inputs. Five Atlantic rivers were chosen to represent contrasting MDN subsidies: four rivers with considerable numbers of anadromous fishes; one river with little MDN input. Rainbow smelt Osmerus mordax, alewife Alosa pseudoharengus, sea lamprey Petromyzon marinus and Atlantic salmon Salmo salar, were the primary anadromous species for the sampled rivers. Regardless of the spatial resolution or the pathway of incorporation, annual nutrient pulses from spawning anadromous fishes had a positive effect on isotopic enrichment at all trophic levels (biofilm, 1·2–5·4‰; macro‐invertebrates, 0·0–6·8‰; fish, 1·2–2·6‰). Community‐wide niche space shifted toward the marine‐nutrient source, but the total ecological niche space did not always increase with MDN inputs. The time‐integrated marine‐nutrient resource contribution to the diet of S. salar parr and brook trout Salvelinus fontinalis ranged between 16·3 and 36·0% during anadromous fish‐spawning periods. The high degree of spatio‐temporal heterogeneity in marine‐nutrient subsidies from anadromous fishes lead to both direct and indirect pathways of MDN incorporation into stream food webs. This suggests that organisms at many trophic levels derive a substantial proportion of their energy from marine resources when present. The current trend of declining anadromous fish populations means fewer nutrient‐rich marine subsidies being delivered to rivers, diminishing the ability to sustain elevated riverine productivity.  相似文献   

3.
Studies have demonstrated the importance of the synergistic relationship between large rivers and adjacent floodplain connectivity. The majority of large rivers and their associated floodplain have been isolated through a series of expansive levee systems. Thus, evaluations of the relative importance of floodplain connectivity are limited due to the aforementioned anthropogenic perturbations. However, persistent elevated river levels during spring 2011 at the confluence of the Mississippi River and Ohio River prompted the U.S. Army Corps of Engineers to create large gaps in the levee system producing an expansive floodplain (i.e. the New Madrid Floodway). Specifically, the New Madrid Floodway (approximately 475 km2) in southeast Missouri was created to divert part of the Mississippi River flow during catastrophic floods and thus alleviate flood risk on nearby population centers. Given the historic flooding of 2011, the floodway was opened and provided an unprecedented opportunity to evaluate the influence of floodplain inundation on fish species diversity, relative abundance, and growth. We sampled the floodplain and the adjacent river at three stratified random locations with replication biweekly from the commencement of inundation (late May) through early October. Overall, we found that species diversity, relative abundance, and growth were higher in the floodplain than the main river. Our data support previous examinations, including those outside North America, that suggest floodplain inundation may be important for riverine fishes. Given these apparent advantages of floodplain inundation, restoration efforts should balance benefits of floodplain inundation while safeguarding priority needs of humans.  相似文献   

4.
The Gambia River of West Africa is a large unobstructed river, characterized by a natural flow regime and lateral connectivity across its floodplain. Construction of a major dam, however, is planned. We compared patterns of fish diversity, habitat use, assemblage structure, and the distribution of trophic position and body morphology in riverine and floodplain habitats in Niokolo Koba National Park, located downstream of the planned dam site. A total of 49 fish species were captured, revealing a lognormal distribution as expected for species‐rich assemblages. Fish species exhibited a range of habitat use patterns, from generalist to highly habitat‐specific, and appeared to migrate laterally among habitats between seasons. Species richness was homogenous among habitats in the wet season yet appeared to increase with isolation from the main river in the dry season. Fish assemblage structure was best explained by the interaction between habitat type and season, underlining the importance of the natural flow regime and lateral connectivity among floodplain habitats. The abundance of fishes having elongate bodies increased with isolation from the main channel in the wet season only. The distribution of fishes having compressed cross‐sectional morphology decreased with isolation from the main channel in the dry season only. These patterns of trait distribution support the conclusion that variation in hydrologic connectivity structures the fish assemblage. Our results suggest that altered flow regimes and loss of floodplain habitats after damming could lead to both decreased taxonomic and functional diversity of the fish assemblage.  相似文献   

5.
6.
7.
Effective natural resource management requires knowledge exchange between researchers and managers to support evidence‐based decision‐making. To achieve this, there is a need to align research with management and policy needs. This project aimed to identify the flow‐related ecological knowledge needs for freshwater fish to better inform environmental water management in the Murray–Darling Basin, south‐eastern Australia. Our major objective was to provide an up‐to‐date assessment of scientific research and integrate this with the knowledge requirements of relevant managers to guide future research. We reviewed the contemporary scientific literature and engaged managers specifically responsible for delivering flows for fish outcomes via a questionnaire and workshop. Research on fishes of the MDB has generally evolved from single locations and/or times to larger spatio‐temporal scales, including multiple sites, rivers and catchments. There has also been a trend from single life stage studies to incorporation of multiple life stages and population processes. There remain, however, significant deficiencies in knowledge for most native species, many of which are threatened. Four agreed key knowledge gaps were derived from the literature review and managers’ suggestions: (i) population dynamics, (ii) movement, dispersal and connectivity, (iii) survival and recruitment to adults and (iv) recruitment drivers. To inform policy and management, managers desired timely advice, based on robust research and monitoring. Fish species of most relevance to managers were those highly regarded by community stakeholders and whose life histories and population dynamics are potentially influenced by flow. Populations of these mostly large‐bodied, angling species (e.g. Murray Cod, Golden Perch and Silver Perch) have declined, often due to river regulation and, in conjunction with managers’ priorities, are relevant candidates for research to support the management of flow to rehabilitate fish populations in the MDB.  相似文献   

8.
1. Climatic effects are increasingly being recognised as an important factor causing inter‐annual variability in organism abundances in aquatic and terrestrial ecosystems. This study investigated the relationships between water temperature (cumulative degree‐days >12 °C), river discharge (cumulative discharge‐days above basal discharge rate), the position of the North Wall of the Gulf Stream (NWGS), and the 0+ growth (September mean length) and recruitment success (year‐class strength, YCS) of three species of cyprinid fishes in two contrasting English lowland rivers, using a 21‐year dataset. 2. Contrary to the majority of studies on 0+ fishes, growth in the Yorkshire Ouse was most significantly correlated with river discharge, with water temperature of less importance. By contrast, temperature was more influential than discharge in the River Trent, possibly because of its regulated hydrological regime, although none of the relationships were statistically significant for this river. 3. Year‐class strength of roach (Rutilus rutilus) was positively correlated with the position of the NWGS, and there was evidence of synchrony in recruitment success between rivers, but the relationships were poorer for chub (Leuciscus cephalus) and dace (Leuciscus leuciscus). The strongest relationships between YCS and discharge during specific time periods were for when the fish were in their early (especially larval) developmental stages, although none of the relationships were statistically significant because of inter‐annual variations in river discharge relative to the timing of fish hatching. 4. Fishes are key predators in the majority of aquatic ecosystems and, as such, fluctuations in their abundances can have implications for ecosystem functioning as a whole. This study has demonstrated an underlying influence of broad‐scale climatic effects on the recruitment of riverine fishes, in spite of local variations in biotic and abiotic conditions. The relative importance of various abiotic factors on the recruitment success of riverine cyprinid populations varies spatially and temporally. For example, river discharge is likely to be of relatively greater importance in poorly‐structured rivers or those that are prone to large and rapid fluctuations in flow, while temporal variations occur because of inter‐annual differences in river discharge relative to the timing of fish hatching. Biotic factors may also be important determinants of fish recruitment success, especially in rivers with stable and predictable flow regimes.  相似文献   

9.
Ward  Tockner 《Freshwater Biology》2001,46(6):807-819
1. A broadened concept of biodiversity, encompassing spatio‐temporal heterogeneity, functional processes and species diversity, could provide a unifying theme for river ecology. 2. The theoretical foundations of stream ecology often do not reflect fully the crucial roles of spatial complexity and fluvial dynamics in natural river ecosystems, which has hindered conceptual advances and the effectiveness of efforts at conservation and restoration. 3. Inclusion of surface waters (lotic and lentic), subsurface waters (hyporheic and phreatic), riparian systems (in both constrained and floodplain reaches), and the ecotones between them (e.g. springs) as interacting components contributing to total biodiversity, is crucial for developing a holistic framework of rivers as ecosystems. 4. Measures of species diversity, including alpha, beta and gamma diversity, are a result of disturbance history, resource partitioning, habitat fragmentation and successional phenomena across the riverine landscape. A hierarchical approach to diversity in natural and altered river‐floodplain ecosystems will enhance understanding of ecological phenomena operating at different scales along multidimensional environmental gradients. 5. Re‐establishing functional diversity (e.g. hydrologic and successional processes) across the active corridor could serve as the focus of river conservation initiatives. Once functional processes have been reconstituted, habitat heterogeneity will increase, followed by corresponding increases in species diversity of aquatic and riparian biota.  相似文献   

10.
Riverine landscape diversity   总被引:26,自引:1,他引:26  
1. This review is presented as a broad synthesis of riverine landscape diversity, beginning with an account of the variety of landscape elements contained within river corridors. Landscape dynamics within river corridors are then examined in the context of landscape evolution, ecological succession and turnover rates of landscape elements. This is followed by an overview of the role of connectivity and ends with a riverine landscape perspective of biodiversity. 2. River corridors in the natural state are characterised by a diverse array of landscape elements, including surface waters (a gradient of lotic and lentic waterbodies), the fluvial stygoscape (alluvial aquifers), riparian systems (alluvial forests, marshes, meadows) and geomorphic features (bars and islands, ridges and swales, levees and terraces, fans and deltas, fringing floodplains, wood debris deposits and channel networks). 3. Fluvial action (erosion, transport, deposition) is the predominant agent of landscape evolution and also constitutes the natural disturbance regime primarily responsible for sustaining a high level of landscape diversity in river corridors. Although individual landscape features may exhibit high turnover, largely as a function of the interactions between fluvial dynamics and successional phenomena, their relative abundance in the river corridor tends to remain constant over ecological time. 4. Hydrological connectivity, the exchange of matter, energy and biota via the aqueous medium, plays a major though poorly understood role in sustaining riverine landscape diversity. Rigorous investigations of connectivity in diverse river systems should provide considerable insight into landscape‐level functional processes. 5. The species pool in riverine landscapes is derived from terrestrial and aquatic communities inhabiting diverse lotic, lentic, riparian and groundwater habitats arrayed across spatio‐temporal gradients. Natural disturbance regimes are responsible for both expanding the resource gradient in riverine landscapes as well as for constraining competitive exclusion. 6. Riverine landscapes provide an ideal setting for investigating how complex interactions between disturbance and productivity structure species diversity patterns.  相似文献   

11.
12.
13.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

14.
15.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

16.
Fish growth in river ecosystems is influenced by a multitude of environmental drivers, including the heterogeneity of these drivers. Globally, river ecosystems are subject to anthropogenic stressors that can simplify riverine landscapes, homogenize riverine communities, and favor nonnative fishes. Yet, how anthropogenically driven simplification of riverine landscapes affects fish life-history traits remains largely unknown. The aim of this study was to examine the character of fish growth along the entire main channel of an Anthropocene River. We collected four species of potamodromous fish from different functional feeding guilds, from each of six functional process zones (FPZs) – unique large-scale hydrogeomorphic patches – along the entire length of the Illinois River (Illinois, USA), and calculated three growth metrics: growth rate (k), maximum size (L), and a relative growth index. The majority (7 of 12) of species-growth metric combinations did not differ among FPZs. Of the five species-growth metric combinations that were different, none exhibited more than three distinct groups of values. The limited difference in growth along the main channel of the Illinois River reflects a homogenization of ecosystem function, and is associated with the systemic simplification of physical heterogeneity of the river channel. The fishes studied from the Illinois River also tended to have faster growth rates (k) and smaller maximum sizes (L) relative to other North American freshwater ecosystems. Our results reveal spatial constraints to life-history traits and changes to ecosystem interactions, which are evidence of being in a new regime or state. This has implications for the reproductive output and resilience of native fishes in Anthropocene Rivers.  相似文献   

17.
Stable isotope analysis of organic matter in sediment records has long been used to track historical changes in productivity and carbon cycling in marine and lacustrine ecosystems. While flow dynamics preclude stratigraphic measurements of riverine sediments, such retrospective analysis is important for understanding biogeochemical cycling in running waters. Unique collections of riverine fish scales were used to analyse δ15N and δ13C variations in the food web of two European rivers that experience different degrees of anthropogenic pressure. Over the past four decades, dissolved inorganic N loading remained low and constant in the Teno River (70°N, Finland); in contrast, N loading increased fourfold in the Scorff River (47°N, France) over the same period. Archived scales of Atlantic salmon parr, a riverine life‐stage that feeds on aquatic invertebrates, revealed high δ15N values in the Scorff River reflecting anthropogenic N inputs to that riverine environment. A strong correlation between dissolved inorganic N loads and δ13C values in fish scales was observed in the Scorff River, whereas no trend was found in the Teno River. This result suggests that anthropogenic N‐nutrients enhanced atmospheric C uptake by primary producers and its transfer to fish. Our results illustrate for the first time that, as for lakes and marine ecosystems, historical changes in anthropogenic N loading can affect C cycling in riverine food webs, and confirm the long‐term interactions between N and C biogeochemical cycles in running waters.  相似文献   

18.
Aim To estimate population extinction rates within freshwater fish communities since the fragmentation of palaeo‐rivers due to sea level rise at the end of the Pleistocene; to combine this information with rates estimated by other approaches (population surveys, fossil records); and to build an empirical extinction–area relationship. Location Temperate rivers from the Northern Hemisphere, with a special focus on rivers discharging into the English Channel, in north‐western France. Methods (1) French rivers. We used a faunal relaxation approach to estimate extinction rates in coastal rivers after they became isolated by the sea level rise. Tributaries within the Seine were used to build a species–area relationship for a non‐fragmented river system to predict species richness in coastal rivers before their fragmentation. (2) Other rivers. Extinction rates obtained for four other Holarctic river systems fragmented at the end of the Pleistocene, the fragmented populations of one salmonid species (Japan) and the fossil records from the Mississippi Basin were included in the study. Results (1) French rivers. Within strictly freshwater fish species, rare and/or habitat specialist species were the most affected by fragmentation. In contrast, euryhaline species were not affected. A negative relationship between extinction rate and river basin size was observed. (2) Other rivers. Our study established a common scaling relationship for freshwater fish population extinction rates that spans seven orders of magnitude in river basin size. Main conclusions This study strongly suggests that extinctions of fish populations occurred within French coastal rivers after they became isolated 8000 years ago. The patterns observed at regional and inter‐continental scales are consistent with the expectation that large populations are less prone to extinction than small ones, resulting in a strong extinction–area relationship coherent over a large spatio‐temporal scale. Our study is the first multi‐scale quantitative assessment of background extinction patterns for freshwater fishes.  相似文献   

19.
This paper presents primary research results on nutrient emissions, resulting water quality and ecological impacts of the Kharaa river basin (Mongolia) during a three‐year water resource management study. Based on surveillance data from Mongolian environmental authorities and a complementary own monitoring scheme we calculated nutrient emissions on a sub‐basin scale. Additionally, the ecological situation of fish fauna, macroinvertebrates and their habitats were investigated on selected river sections in order to link anthropogenic pressures, nutrient status and ecological impact. Although the headwaters of the Kharaa represent natural background conditions (total nitrogen (TN) 0.46 to 0.58 mg N L–1, total phosphorus (TP) 0.011 to 0.018 mg P L–1) and population densities within the catchment are very low (< 10 inhabitants km–2), the river basin is facing relatively high anthropogenic pressures on water quality in the middle and especially in the lower reaches (total nitrogen 1.50 to 1.52 mg N L–1, total phosphorus 0.18 to 0.26 mg P L–1). Nitrogen emissions into the Kharaa river basin were about 301 t N yr–1 for the time period 2006–2008. For phosphorus a total emission of 56 t P yr–1 was estimated. Main contributors are urban settlements with a high proportion of households without connection to wastewater treatment plants and, to a lesser extent, agricultural land‐use. These nutrient levels have a significant eutrophication potential in the Kharaa River and we observed functional shifts of the macroinvertebrates and fish fauna, while the drinking water abstraction through bank filtration showed no significant alteration of raw water quality. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (<20 cm), diversity and total biomass were reduced with increased proximity to the river mouth. The abundance of all fishes, but particularly small-bodied, juvenile and herbivorous fishes was reduced in turbid water when compared to clear-water sites. Results strongly suggest that fluvial sediment inputs may play an important role in structuring fish assemblages even under intense fishing pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号