首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are few longtime studies on the effects on aphids of being tended by ants. The aim of this study is to investigate how the presence of ants influences settling decisions by colonizing aphids and the post‐settlement growth and survival of aphid colonies. We conducted a field experiment using the facultative myrmecophile Aphis fabae and the ant Lasius niger. The experiment relied on natural aphid colonization of potted plants of scentless mayweed Tripleurospermum perforatum placed outdoors. Ants occurred naturally at the field site and had access to half of the pots and were prevented from accessing the remainder. The presence of winged, dispersing aphids, the growth and survival of establishing aphid colonies, and the presence of parasitoids were measured in relation to presence or absence of ants, over a period of five weeks. The presence of ants did not significantly influence the pattern of initial host plant colonization or the initial colony growth, but ant‐tended aphids were subject to higher parasitism by hymenopteran parasitoids. The net result over the experimental period was that the presence of ants decreased aphid colony productivity, measured as the number of winged summer migrants produced from the colonized host plants. This implies that aphids do not always benefit from the presence of ants, but under some conditions rather pay a cost in the form of reduced dispersal.  相似文献   

2.
The means by which plant genotypes influence species interactions and arthropod community structure remain poorly understood. One potential, but largely unstudied mechanism is that occurring through plant genetic variation in induced responses to herbivory. Here we test whether induced responses to leaf damage and genotypic variation for induction in Asclepias syriaca influence interactions among Formica podzolica ants, the ant‐tended aphid Aphis asclepiadis, and the untended aphid Myzocallis asclepiadis. In so doing, we assess genetic variation in plant‐mediated interactions among different herbivore guilds. We conducted a three‐way factorial field experiment manipulating plant genotype, leaf damage by specialist monarch caterpillars Danaus plexippus, and ant presence, and documented effects on aphid and ant abundances. Leaf damage increased Aphis abundance in both the presence and absence of ants and Myzocallis abundance under ant exclusion. In the presence of ants, leaf damage decreased Myzocallis abundance, likely due to effects on ant–Myzocallis interactions; ants showed a positive association with Myzocallis, leaf damage increased the strength of this association (425% more ants per aphid), and this in turn fed back to suppress Myzocallis abundance. Yet, these aggregate effects of leaf damage on Myzocallis and ants were underlain by substantial variation among milkweed geno types, with leaf damage inducing lower aphid and ant abundances on some genotypes, but higher abundances on others. As a consequence, a substantial fraction of the variation in leaf damage effects on ants (R2 =0.42) was explained by milkweed genetic variation in the strength and sign of leaf damage effects on Myzocallis. Although plant genetic variation influenced Aphis abundance, this did not translate into genetic variation in ant abundance, and leaf damage did not influence Aphis–ant interactions. Overall, we show that variation in induced responses to herbivory is a relevant condition by which plant genotype influences interactions in plant‐centered arthropod communities and provide novel results of effects on the third trophic level.  相似文献   

3.
Effects of habitat diversification through ground cover management on green apple aphids (Aphis spp.) (Hemiptera: Aphididae), woolly apple aphid (Eriosoma lanigerum [Haussmann]) (Hemiptera: Aphididae), their insect natural enemies and the most abundant canopy insects (in the Neuroptera, Fulgoromorpha, Cicadomorpha, Heteroptera, Coleoptera and Formicidae) were studied in an apple orchard over 6 years. The composition and diversity of the main functional groups of canopy insects was also compared. Habitat diversification was achieved by changing ground cover conditions within the orchard. In the treatment termed FLOWER, annual and/or perennial flowering plants were sown in the alleys of an apple orchard. Other ground cover treatments were weed-free bare ground (termed BAREgr) and orchard plots with alleys of mowed grass (termed GRASS), which served as control treatments. We found no evidence that habitat diversification enhanced the biological control of green apple aphids compared to the control treatments. However, the greater plant cover in FLOWER resulted in increased woolly apple aphid infestations compared to BAREgr or GRASS. The abundance of various beneficial or neutral canopy insects – Chrysoperla carnea sensu lato (Neuroptera, Chrysopidae) adults, leafhoppers and treehoppers, planthoppers, herbivorous (non-apple feeding) beetles, dipterans and parasitoid wasps – also increased in FLOWER as compared to BAREgr, with GRASS being intermediate between the other treatments. Significantly greater species richness and diversity was found in FLOWER than in BAREgr for most of the functional groups sampled, although the number of predacious insect species was similar among treatments. The composition of the studied functional groups showed high similarity in FLOWER and GRASS, but these treatments were different from BAREgr. Effects of groundcover management on the dominant insect species are discussed.  相似文献   

4.
Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.  相似文献   

5.
1 The rosy apple aphid, Dysaphis plantaginea, is the most serious pest of apple in Europe and, although conventionally controlled by insecticides, alternative management measures are being sought. Colonies of D. plantaginea are commonly attended by ants, yet the effects of this relationship have received little attention. 2 An ant exclusion study was conducted in two distant orchards within the U.K. At both sites, ants were excluded from a subset of D. plantaginea infested trees at the beginning of the season and populations were monitored. The number of natural enemies observed on trees was also recorded and, before harvest, the percentage of apples damaged by D. plantaginea calculated. 3 Overall, the exclusion of ants reduced the growth and eventual size of D. plantaginea populations. On trees accessed by ants, greater numbers of natural enemies were recorded, presumably because aphid populations were often greater on such trees. However, this increased natural enemy presence was diluted by the larger aphid populations such that individual aphids on ant‐attended trees were subjected to a lower natural enemy pressure compared with those on ant‐excluded trees. 4 At harvest, apple trees that had been accessed by ants bore a greater proportion of apples damaged by D. plantaginea. There were also differences in cultivar susceptibility to D. plantaginea damage. 5 The present study highlights the importance of the ant–D. plantaginea relationship and it ia suggested that ant manipulation, whether physically or by semiochemicals that disrupt the relationship, should be considered as a more prominent component in the development of future integrated pest management strategies.  相似文献   

6.
Most studies regarding ant–aphid interactions focus only on the direct effects of ants on tended aphids and aphidophagous predators, or the indirect effects on the host plant. Studies evaluating the effects of aphid‐tending ants on more than one trophic level are rare and evaluate only the presence or absence of such effects. Here we assessed the effect sizes of ants in a tri‐trophic system (common bean plants, aphids and lacewing larvae). We tested if the presence of aphid‐tending ants has positive effects on aphid abundance and host‐plant production and negative effects on aphid predator abundance. We also hypothesized that aphid‐tending ants affect more intensely trophic levels that are more directly related to them (i.e., first aphids, then aphid predators and then host plants). We tested these hypotheses in field mesocosms experiments using the presence and absence of ants. We found that aphid‐tending ants have great positive effects on final aphid abundance. Ants also positively affected the number of seeds; however, it was not possible to measure the effect size for this trophic level. Furthermore, ants had negative effects on lacewing larvae only at first release. The effect size of ants was greater for aphids, followed by lacewing larvae, and with no effects on the number of seeds produced. Ants positively affect aphids and host‐plant production, probably by way of honeydew collection preventing the development of entomophagous/saprophytic fungi. On the other hand, ants negatively affect lacewing larvae by excluding them from the host plant. In natural systems, several ant species may attend aphids, differently affecting the organisms of the various trophic levels within the ant–aphid interaction, thereby obscuring the real effect size of ants. Assessing the effect size of aphid‐tending ants on the organisms involved in ant–aphid interactions provides more realistic information about the effects of this interaction on natural systems.  相似文献   

7.
The rosy apple aphid (Dysaphis plantaginea), the leaf-curling aphid (Dysaphis cf. devecta) and the green apple aphid (Aphis pomi) are widespread pest insects that reduce growth of leaves, fruits and shoots in apple (Malus × domestica). Aphid control in apple orchards is generally achieved by insecticides, but alternative management options like growing resistant cultivars are needed for a more sustainable integrated pest management (IPM). A linkage map available for a segregating F1-cross of the apple cultivars ‘Fiesta’ and ‘Discovery’ was used to investigate the genetic basis of resistance to aphids. Aphid infestation and plant growth characteristics were repeatedly assessed for the same 160 apple genotypes in three different environments and 2 consecutive years. We identified amplified fragment length polymorphism (AFLP) markers linked to quantitative trait loci (QTLs) for resistance to D. plantaginea (‘Fiesta’ linkage group 17, locus 57.7, marker E33M35–0269; heritability: 28.3%), and to D. cf. devecta (‘Fiesta’ linkage group 7, locus 4.5, marker E32M39–0195; heritability: 50.2%). Interactions between aphid species, differences in climatic conditions and the spatial distribution of aphid infestation were identified as possible factors impeding the detection of QTLs. A pedigree analysis of simple sequence repeat (SSR) marker alleles closely associated with the QTL markers revealed the presence of the alleles in other apple cultivars with reported aphid resistance (‘Wagener’, ‘Cox’s Orange Pippin’), highlighting the genetic basis and also the potential for gene pyramiding of aphid resistance in apple. Finally, significant QTLs for shoot length and stem diameter were identified, while there was no relationship between aphid resistance and plant trait QTLs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
C. M. Bristow 《Oecologia》1991,87(4):514-521
Summary Oleander aphids, (Aphis nerii), which are sporadically tended by ants, were used as a moded system to examine whether host plant factors associated with feeding site influenced the formation of ant-aphid associations. Seasonal patterns of host plant utilization and association with attendant ants were examined through bi-weekly censuses of the aphid population feeding on thirty ornamental oleander plands (Nerium oleander) in northern California in 1985 and 1986. Colonies occurred on both developing and senescing plant terminals, including leaf tips, floral structures, and pods. Aphids preferentially colonized leaf terminals early in the season, but showed no preference for feeding site during later periods. Argentine ants (Iridomyrmex humilis) occasionally tended aphid colonies. Colonies on floral tips were three to four times more likely to attract ants than colonies on leaf tips, even though the latter frequently contained more aphids. Ants showed a positive recruitment response to colonies on floral tips, with a significant correlation between colony size and number of ants. There was no recruitment response to colonies on leaf tips. These patterns were reproducible over two years despite large fluctuations in both aphid population density and ant activity. In a laboratory bioassay of aphid palatability, the generalist predator,Hippodamia convergens, took significantly more aphids reared on floral tips compared to those reared on leaf tips. The patterns reported here support the hypothesis that tritrophic factors may be important in modifying higher level arthropod mutualisms.  相似文献   

9.
Mass releases of two parasitoid species, Aphidius matricariae and Ephedrus cerasicola, may provide an alternative measure to pesticides to control the rosy apple aphid Dysaphis plantaginea in organic apple orchards. As an exploratory study, we tested if the presence of flower strips between apple tree rows could improve the action of three early parasitoid releases––and of other naturally present aphid enemies––on the control of aphid colonies and the number of aphids per tree. Apple trees located at various distances from parasitoid release points were monitored in plots with and without flower strips in an organic apple orchard over two years, along the season of aphid infestation (March to July). Our case study demonstrated that the presence of flowering plant mixes in the alleyways of the apple orchard reduced the presence of D. plantaginea by 33.4%, compared to plots without flower strips, at the infestation peak date. We also showed a negative effect of increasing the distance to parasitoid release points on aphid control. However, our results at the infestation peak date suggest that the presence of flower strips could marginally compensate for the detrimental effect of increasing distance to the release point, probably by improving the persistence and dispersal capacities of natural enemies. Despite high variations in aphid population dynamics between years, we conclude that combining flower strips with early parasitoid releases in apple orchards is promising for biological control of the rosy apple aphid, although the method merits to be further refined.  相似文献   

10.
A system was developed to provide the parasitic wasp Ephedrus persicae Froggatt (Hymenoptera: Braconidae: Aphidiinae), which attacks the rosy apple aphid Dysaphis plantaginea (Passerini) (Homoptera: Aphididae), with the alternative host Dysaphis sorbi Kaltenbach (Homoptera: Aphididae) in apple orchards. Rowan trees (Sorbus aucuparia L.) arranged along the side of an unsprayed orchard were artificially infested in late February 2002 with eggs of D. sorbi. Colonies of D. sorbi successfully developed from the introduced eggs and persisted on several trees until the end of June. The only primary parasitoid species emerging from a sample of mummified aphids collected in spring from the infested rowan trees was the braconid wasp species E. persicae. In a host-switching experiment, nymphs of D. plantaginea proved suitable for female parasitoids originating from mummified D. sorbi. A series of mummies collected from the rowan trees in early summer contained diapausing parasitoids and hyperparasitoids that only hatched in April of the following spring. These observations suggest the possibility of establishing a local population of E. persicae in apple orchards, so that D. plantaginea can be readily attacked by diapause-emerging parasitoids in early spring.  相似文献   

11.
Among plants and herbivores, two types of conflicts occur in relation to mutualism with ants: one is competition for ant mutualism among myrmecophilous herbivores and plants, and the other is the conflict whether to attract or repel ants between myrmecophiles and nonmyrmecophiles that are damaged by ants. We investigated the extent to which two species of aphids (Megoura crassicauda and Aphis craccivora) and extrafloral nectaries on their host plant (Vicia faba var. minor) interact with one another for their relationships with ants. We designed an experiment where ants can choose to visit seedlings colonized by (1) M. crassicauda, (2) A. cracivora, (3) both aphid species, or (4) neither aphid species. Ants preferred A. craccivora to extrafloral nectaries and avoided tending M. crassicauda. We also analyzed the population growth of each aphid when it coexists with (1) ants, (2) the other aphid species, (3) ants and the other aphid species, or (4) neither of them. Under ant-free conditions, we detected an exploitative competition between the two aphid species. The ants had no significant effect on the population of A. craccivora, whereas they had negative effects on the population growth of M. crassicauda by attacking some individuals. When both aphids coexisted, M. crassicauda suffered ant attack more intensely because A. craccivora attracted more ants than extrafloral nectaries despite ant-repelling by M. crassicauda. On the other hand, the ants benefited A. craccivora by eliminating its competitor. To avoid ant attack, aphids may have been selected either to be more attractive to ants than other sympatric sugar sources or to repel the ants attracted to them. We hypothesize that competition among sympatric sugar sources including rival aphids and extrafloral nectaries is a factor restricting aphids to be myrmecophilous. Received: January 17, 2000 / Accepted: July 4, 2000  相似文献   

12.
Sap-feeding homopterans, which reduce the fitness of their host plants, are often tended by ants that feed on their honeydew. The composition of the honeydew varies with both the aphid and the host plant. Extra-floral nectaries (EFNs) are believed to have evolved to attract attending ants, protecting the hosts, but it is unknown if EFNs on different plants have the same impact on the relations between an aphid species feeding on those plants and its tending ant. Experimental research was conducted to examine the attraction of Tapinoma erraticum scout ants to honeydew from the aphid Aphis gossypii feeding on two different plants, Prunus amygdalus and Mentha piperita, negligence of tending the aphids, and survival of the aphids in the presence of artificial EFNs. The scout ants were significantly more attracted to artificial nectar dispensed on P. amygdalus leaves than on M. piperita, or aphids on both plants and water. They neglected aphids in the presence of artificial EFNs on M. piperita but not on P. amygdalus. The aphid population on M. piperita did not statistically change in the presence of artificial EFNs during the 8 days of the third experiment. On P. amygdalus, the aphids succeeded in developing fully to winged form. In conclusion, the responses of the ants tending aphids to the presence of artificial EFNs were influenced by the host plant.  相似文献   

13.
For the mutualistic interaction between the aphid Metopeurum fuscoviride Stroyan (Homoptera: Aphididae) and the ant Lasius niger L. (Hymenoptera: Formicidae) it has been shown that ant-tended aphids develop faster, reproduce at a higher rate, and live longer than aphids not tended by ants. We used electrical penetration graphs (EPG) to investigate if behavioural patterns differ between ant-tended and untended M. fuscoviride during 8 h experiments. Measurements were made on adult aphids from four different ant-tended colonies that continued to be tended by L. niger during the experiments, and from four different colonies where ant workers were excluded several days before the start of the experiment and that were also not tended by ants during the experiments. Ants readily tended wired aphids and ant tending did not interfere with the EPG measurements. There were no significant differences in the duration of sieve element penetration or in any other analysed feeding-related EPG parameters between ant-tended and untended individuals. However, the quality of the EPG recordings did not allow the distinction between the EPG-waveform E1 (salivation only) and E2 (salivation and ingestion). These results suggest that the changes in life-history traits of ant-tended aphids do not result from changes in time of sieve element penetration waveforms. Alternative mechanisms may involve an increase in the rate of sap uptake or a higher effectiveness in nutrient uptake in the presence of ants. Our study demonstrates that the EPG technique is a useful tool to investigate the feeding behaviour of aphids during interactions with ants.  相似文献   

14.
  • 1 The rosy apple aphid Dysaphis plantaginea (Passerini) (Homoptera: Aphididae) is a pest of economic importance to the apple industry worldwide, particularly in organic apple orchards where no acceptable controls are available. In the Similkameen Valley of British Columbia, Canada, the rosy apple aphid population size varies widely between orchards and between years. To explain this variation, potential environmental correlates of aphid density were evaluated. The architecture of the alternate host was also evaluated for its effect on rosy apple aphid summer survival and reproduction.
  • 2 The percentage of trees infested by rosy apple aphids among orchards was in the range 8–94% for trees having at least one cluster with more than ten aphids in 2007 and in the range 0–39% in 2008.
  • 3 A general linear model correlating aphid densities to the environmental variables of abundance of the alternate host (plantain Plantago spp.), foliar nitrogen, tree age and planting density, and reduced by stepwise regression, indicated that foliar nitrogen and tree age explained 33% of the variation. Abundance of the summer, alternate food plant, plantain, was not related to later aphid densities on apple trees.
  • 4 Plantain architecture, however, influenced aphid numbers and 25‐fold more aphids were found on low‐lying plantain leaves than on more upright leaves. Experimental manipulation of leaf angle and leaf size showed that significantly more aphids occurred on low angle, large leaves. Finally, mowing that encouraged low lying plants prior to spring aphid migration was associated with a four‐fold greater number of both winged and wingless aphids on the plantain.
  相似文献   

15.
This study focused on three species of enemies, the parasitoid wasp Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae), the ladybird Scymnus posticalis Sicard (Coleoptera: Coccinellidae) and the predatory gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), all of which are able to exploit aphids attended by ants. I experimentally evaluated the effects of prey aphid species on the abundance of each of the three enemy species in ant‐attended aphid colonies on citrus. The aphids compared were Aphis gossypii Glover versus Aphis spiraecola Patch in late spring, and Toxoptera citricidus (Kirkaldy) versus A. spiraecola in late summer (all, Hemiptera: Aphididae). Colonies of the three aphid species were attended by the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae). The initial number of attending ants per individual aphid did not differ significantly between the colonies of the two aphid species compared in each season. Between A. gossypii and A. spiraecola, there was no significant difference in the number of mummies formed by the parasitoid or foraging larvae of each of the two predators per aphid colony. A significant difference was detected between T. citricidus and A. spiraecola for each of the three enemy species, with a far greater number of L. japonicus mummies in T. citricidus colonies and distinctly more larvae of each of the two predators in A. spiraecola colonies. Thus, the abundance of each of the three enemy species in ant‐attended aphid colonies was significantly influenced by the species of the prey aphids, with the three enemies showing different responses to the three aphid species.  相似文献   

16.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

17.
18.

Ant–aphid mutualisms can generate cascade effects on the host plants, but these impacts depend on the ecological context. We studied the consequences of ant–aphid interactions on the reproductive performance of a Mediterranean leafless shrub (Retama sphaerocarpa), through direct and indirect effects on the arthropod community. By manipulating the presence of ants and aphids in the field, we found that ants increased aphid abundance and their persistence on the plant and reduced aphid predators by nearly half. However, the presence of ants did not affect the abundance of other plant herbivores, which were relatively scarce in the studied plants. Aphids, and particularly those tended by ants, had a negative impact on the plant reproductive performance by significantly reducing the number of fruits produced. However, fruit and seed traits were not changed by the presence of aphids or those tended by ants. We show that ants favoured aphids by protecting them from their natural enemies but did not indirectly benefit plants through herbivory suppression, resulting in a net negative impact on the plant reproductive performance. Our study suggests that the benefits obtained by plants from hosting ant–aphid mutualisms are dependent on the arthropod community and plant traits.

  相似文献   

19.
Dysaphis devecta causes the leaves of its host plant to roll laterally whereas D. plantaginea causes them to roll longitudinally. Both species of aphid are phloem feeders. D. devecta prefers to feed on the smaller veins in the lamina whereas D.plantaginea chooses the midrib. However, groups of D. devecta or D. plantaginea confined to the stem of an apple seedling induced young leaves several centimetres away to develop leaf rolls characteristic of each species. A single larva of D. devecta or D. plantaginea can induce a leaf-roll or a stem-bend on an apple seedling within 24 h. It is suggested that characteristic abnormalities in leaves attacked by D. devecta and D. plantaginea are caused by specific substances in the saliva of each aphid.  相似文献   

20.
Using standard diversity indices, samples of aphids collected on a vertical net were found to be more diverse than collections from green pan traps in experiments conducted in Nanjing, China in 1981. Some species, notably Myzuspersicae, Aphis citricola, and Eriosoma (Schizoneura) japonicum, were collected in greater relative numbers in the pan traps. Several species, including the Macrosiphoniella spp., were under-represented in the green pan traps presumably because they were not attracted to the green colour of the traps. Yellow pan traps, used concurrently to monitor landing rates of economic species, caught relatively more Aphis craccivora and M. persicae and relatively fewer Aphis gossypii than green ones. In the Nanjing area soybean mosaic virus (SMV) usually spreads in spring planted soybeans during the latter half of May, causing damage. The predominant aphid species trapped at that time were M. persicae, Lipaphis erysimi, A. gossypii, A. craccivora and E. japonicum, of which the first four are known vectors. Summer planted soybeans are usually affected during a second period of virus spread occurring in mid-August when various Aphis spp. are abundant. The predominant vector of SMV at that time was thought to be Aphis glycines which colonises the crop; in 1981, however, A. citricola and A. gossypii, which do not colonise soybean and A. craccivora. which rarely colonises soybean, were much more abundant in mid-August than A. glycines. A. citricola, A. gossypii and A. craccivora are all able to transmit SMV, and thus should be considered as potentially important vectors. In infectivity assays, only four of 1040 aphids transmitted SMV. These included an A. craccivora, two Toxoptera citricidus and one Aphis sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号