首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
BamA of Escherichia coli is an essential component of the hetero‐oligomeric machinery that mediates β‐barrel outer membrane protein (OMP) assembly. The C‐ and N‐termini of BamA fold into trans‐membrane β‐barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β‐barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site‐specific cross‐linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β‐barrel OMPs except for TolC, which folds into a unique soluble α‐helical barrel and an OM‐anchored β‐barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans‐membrane β‐barrel domain of BamA.  相似文献   

2.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

3.
BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.  相似文献   

4.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

5.
Inactivation of the gene encoding the periplasmic protease DegP confers a high-temperature-sensitive phenotype in Escherichia coli. We have previously demonstrated that a degP mutant of E. coli strain CBM (W3110 pldA1) is not temperature sensitive and showed that this was most likely due to constitutive activation of the sigma E and Cpx extracytoplasmic stress regulons in the parent strain. In this study, further characterization of this strain revealed a previously unknown cryptic mutation that rescued the degP temperature-sensitive phenotype by inducing the extracytoplasmic stress regulons. We identified the cryptic mutation as an 11-bp deletion of nucleotides 1884 to 1894 of the adenylate cyclase-encoding cyaA gene (cyaAΔ11). The mechanism in which cyaAΔ11 induces the sigma E and Cpx regulons involves decreased activity of the mutant adenylate cyclase. Addition of exogenous cyclic AMP (cAMP) to the growth medium of a cyaAΔ11 mutant strain that contains a Cpx- and sigma E-inducible degP-lacZ reporter fusion decreased β-galactosidase expression to levels observed in a cyaA+ strain. We also found that a cyaA null mutant displayed even higher levels of extracytoplasmic stress regulon activation compared to a cyaAΔ11 mutant. Thus, we conclude that the lowered concentration of cAMP in cyaA mutants induces both sigma E and Cpx extracytoplasmic stress regulons and thereby rescues the degP temperature-sensitive phenotype.  相似文献   

6.
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral β‐barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram‐negative bacteria that are central components of an OM β‐barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N‐terminal periplasmic domain and a C‐terminal, surface‐exposed β‐barrel domain. Additionally, assays with an IPTG‐regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface‐exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.  相似文献   

7.
RseA sequesters RpoE (σ(E)) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σ(E) to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σ(E) regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σ(E) levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σ(E)-dependent RybB::LacZ construct showed only a weak activation of the σ(E) pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σ(E) and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrA(L222Q), it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σ(E)-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σ(E)-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σ(E) may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σ(E) levels.  相似文献   

8.
9.
StpA is a paralogue of the nucleoid‐associated protein H‐NS that is conserved in a range of enteric bacteria and had no known function in Salmonella Typhimurium. We show that 5% of the Salmonella genome is regulated by StpA, which contrasts with the situation in Escherichia coli where deletion of stpA only had minor effects on gene expression. The StpA‐dependent genes of S. Typhimurium are a specific subset of the H‐NS regulon that are predominantly under the positive control of σ38 (RpoS), CRP‐cAMP and PhoP. Regulation by StpA varied with growth phase; StpA controlled σ38 levels at mid‐exponential phase by preventing inappropriate activation of σ38 during rapid bacterial growth. In contrast, StpA only activated the CRP‐cAMP regulon during late exponential phase. ChIP‐chip analysis revealed that StpA binds to PhoP‐dependent genes but not to most genes of the CRP‐cAMP and σ38 regulons. In fact, StpA indirectly regulates σ38‐dependent genes by enhancing σ38 turnover by repressing the anti‐adaptor protein rssC. We discovered that StpA is essential for the dynamic regulation of σ38 in response to increased glucose levels. Our findings identify StpA as a novel growth phase‐specific regulator that plays an important physiological role by linking σ38 levels to nutrient availability.  相似文献   

10.
11.
Diderm bacteria have an outer membrane that provides defense against environmental factors including antibiotics. Understanding the process of outer membrane biogenesis is, therefore, of critical importance in order to envisage new treatments of these bacterial pathogens. Borrelia burgdorferi is the pathogen responsible for Lyme disease. Its outer membrane contains integral, β‐barrel proteins as well as swathes of externally exposed lipoproteins. Previous work has demonstrated that the β‐barrel assembly machine (BAM complex) in B. burgdorferi and other Spirochetes shares several similarities with the BAM complex in other bacterial lineages, such as the Proteobacteria that includes Escherichia coli. However, Iqbal et al. ( 2016 ) have identified the inner membrane protein TamB as a subunit of the BAM complex in Spirochetes. This latest study highlights the modular nature of the BAM complex, and suggests that in some bacterial lineages the BAM complex and translocation and assembly module (the TAM) function as a single unit.  相似文献   

12.
Biogenesis of the outer membrane (OM) is an essential process in gram-negative bacteria. One of the key steps of OM biogenesis is the assembly of integral outer membrane beta-barrel proteins (OMPs) by a protein machine called the Bam complex. In Escherichia coli, the Bam complex is composed of the essential proteins BamA and BamD and three nonessential lipoproteins, BamB, BamC, and BamE. Both BamC and BamE are important for stabilizing the interaction between BamA and BamD. We used comprehensive genetic analysis to clarify the interplay between BamA and the BamCDE subcomplex. Combining a ΔbamE allele with mutations in genes that encode other OMP assembly factors leads to severe synthetic phenotypes, suggesting a critical function for BamE. These synthetic phenotypes are not nearly as severe in a ΔbamC background, suggesting that the functions of BamC and BamE are not completely overlapping. This unique function of BamE is related to the conformational state of BamA. In wild-type cells, BamA is sensitive to externally added proteinase K. Strikingly, when ΔbamE mutant cells are treated with proteinase K, BamA is degraded beyond detection. Taken together, our findings suggest that BamE modulates the conformation of BamA, likely through its interactions with BamD.  相似文献   

13.
《Biophysical journal》2021,120(23):5295-5308
The outer membrane of Gram-negative bacteria presents a robust physicochemical barrier protecting the cell from both the natural environment and acting as the first line of defense against antimicrobial materials. The proteins situated within the outer membrane are responsible for a range of biological functions including controlling influx and efflux. These outer membrane proteins (OMPs) are ultimately inserted and folded within the membrane by the β-barrel assembly machine (Bam) complex. The precise mechanism by which the Bam complex folds and inserts OMPs remains unclear. Here, we have developed a platform for investigating Bam-mediated OMP insertion. By derivatizing a gold surface with a copper-chelating self-assembled monolayer, we were able to assemble a planar system containing the complete Bam complex reconstituted within a phospholipid bilayer. Structural characterization of this interfacial protein-tethered bilayer by polarized neutron reflectometry revealed distinct regions consistent with known high-resolution models of the Bam complex. Additionally, by monitoring changes of mass associated with OMP insertion by quartz crystal microbalance with dissipation monitoring, we were able to demonstrate the functionality of this system by inserting two diverse OMPs within the membrane, pertactin, and OmpT. This platform has promising application in investigating the mechanism of Bam-mediated OMP insertion, in addition to OMP function and activity within a phospholipid bilayer environment.  相似文献   

14.
The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly.Membrane-embedded β-barrel proteins are found in the outer membranes (OMs) of gram-negative bacteria, mitochondria, and chloroplasts. Only in recent years have cellular components required for the assembly and insertion of these OM proteins (OMPs) into the OM been identified. Omp85, which was first characterized in Neisseria meningitidis, is the key protein of the OMP assembly machinery (41). The function of Omp85 has been preserved during evolution, not only in gram-negative bacteria (8, 37, 44, 46) but also in mitochondria, where an Omp85 homolog, also known as Tob55 or Sam50, was shown to mediate the assembly of β-barrel proteins into the OM (15, 23, 27). Accordingly, bacterial OMPs are still recognized by the eukaryotic assembly machinery: when expressed in yeast, bacterial OMPs were found to be assembled into the mitochondrial OM in a Tob55-dependent manner (43). Omp85 in Escherichia coli, which was recently renamed BamA, for β-barrel assembly machinery (Bam) component A, is associated with at least four lipoproteins: BamB (formerly known as YfgL), BamC (NlpB), BamD (YfiO), and BamE (SmpA) (32, 46). In E. coli, BamB, BamC, and BamE are not essential, but the phenotypes of deletion mutants suggest that these proteins contribute to the efficiency of OMP assembly. Like BamA, BamD is an essential protein in E. coli (24, 26), involved in OMP assembly (24). These lipoproteins are evolutionarily less well conserved; the mitochondrial Tob55 protein is associated with two accessory proteins, but they do not show any sequence similarity with the lipoproteins of the E. coli Bam complex (14).Besides E. coli, N. meningitidis is one of the major bacterial model organisms for studies of OM assembly. As mentioned above, it was the first organism in which the function of Omp85 was identified (41), and also, the role of an integral OMP, designated LptD (formerly Imp or OstA), in the transport of lipopolysaccharide (LPS) to the cell surface was first established in N. meningitidis (3). With regard to OM biogenesis, N. meningitidis has several features that distinguish it from E. coli. For example, in contrast to E. coli (13), N. meningitidis mutants defective in LPS synthesis or transport are viable (3, 34), and OMPs are assembled perfectly well in such mutants (33). Furthermore, in OMP assembly mutants of E. coli, the periplasmic accumulation of unassembled OMPs is limited due to the induction of the σE extracytoplasmic stress response, which results in the degradation of unfolded OMPs (30) and the inhibition of their synthesis by small regulatory RNAs (20). In contrast, in N. meningitidis, most of the components involved in this response are absent (4), and unassembled OMPs continue to accumulate as periplasmic aggregates when OMP assembly is halted (41). However, the composition of the Bam complex and the role of accessory components in OMP assembly have not so far been studied in this organism. Therefore, to further understand the OMP assembly process in N. meningitidis, we have now analyzed the composition of the Bam complex and addressed the roles of the different components.  相似文献   

15.
The Omp85 family of proteins has been found in all Gram-negative bacteria and even several eukaryotic organisms. The previously uncharacterized Escherichia coli member of this family is YaeT. The results of this study, consistent with previous Omp85 studies, show that the yaeT gene encodes for an essential cellular function. Direct examinations of the outer membrane fraction and protein assembly revealed that cells depleted for YaeT are severely defective in the biogenesis of outer membrane proteins (OMPs). Interestingly, assemblies of the two distinct groups of OMPs that follow either SurA- and lipopolysaccharide-dependent (OmpF/C) or -independent (TolC) folding pathways were affected, suggesting that YaeT may act as a general OMP assembly factor. Depletion of cells for YaeT led to the accumulation of OMPs in the fraction enriched for periplasm, thus indicating that YaeT facilitates the insertion of soluble assembly intermediates from the periplasm to the outer membrane. Our data suggest that YaeT's role in the assembly of OMPs is not mediated through a role in lipid biogenesis, as debated for Omp85 in Neisseria, thus advocating a conserved OMP assembly function of Omp85 homologues.  相似文献   

16.
17.
18.
Autotransporters are a large superfamily of cell surface proteins produced by Gram‐negative bacteria that consist of an N‐terminal extracellular domain (‘passenger domain’) and a C‐terminal β‐barrel domain that resides in the outer membrane (OM). Although it was originally proposed that the passenger domain is translocated across the OM through a channel formed exclusively by the covalently linked β‐barrel domain, this idea has been strongly challenged by a variety of observations. Recent experimental results have suggested a new model in which both the translocation of the passenger domain and the membrane integration of the β‐barrel domain are facilitated by the Bam complex, a highly conserved heteroligomer that plays a general role in OM protein assembly. Other factors, including periplasmic chaperones and inner membrane proteins, have also recently been implicated in the biogenesis of at least some members of the autotransporter superfamily. New results have raised intriguing questions about the energetics of the secretion reaction and the relationship between the assembly of autotransporters and the assembly of other classes of OM proteins. Concomitantly, new mechanistic and structural insights have expanded the utility of the autotransporter pathway for the surface display of heterologous peptides and proteins of interest.  相似文献   

19.
20.
BepA (formerly YfgC) is an Escherichia coli periplasmic protein consisting of an N‐terminal protease domain and a C‐terminal tetratricopeptide repeat (TPR) domain. We have previously shown that BepA is a dual functional protein with chaperone‐like and proteolytic activities involved in membrane assembly and proteolytic quality control of LptD, a major component of the outer membrane lipopolysaccharide translocon. Intriguingly, BepA can associate with the BAM complex: the β‐barrel assembly machinery (BAM) driving integration of β‐barrel proteins into the outer membrane. However, the molecular mechanism of BepA function and its association with the BAM complex remains unclear. Here, we determined the crystal structure of the BepA TPR domain, which revealed the presence of two subdomains formed by four TPR motifs. Systematic site‐directed in vivo photo‐cross‐linking was used to map the protein–protein interactions mediated by the BepA TPR domain, showing that this domain interacts both with a substrate and with the BAM complex. Mutational analysis indicated that these interactions are important for the BepA functions. These results suggest that the TPR domain plays critical roles in BepA functions through interactions both with substrates and with the BAM complex. Our findings provide insights into the mechanism of biogenesis and quality control of the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号