首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
ABSTRACT

Gas exchange temperature dependence in Quercus ilex shrubs growing in the Mediterranean maquis was analysed. The gas exchange trend was monitored during the year: photosynthetic activity (A net) reached the highest average rates in early spring and autumn (12.5 µmol m-2s-1 was the absolute maximum A net measured) and the lowest rates were monitored in the middle of June. There was a good correlation (r = 0.72) between A net and g s (A net = 4.1246 ln g s + 4316; P < 0.01), indicating that stomatal control of CO2 diffusion plays an important role in controlling photosynthetic activity. Leaf temperature allowing the highest photosynthetic and stomatal conductance rates of Quercus ilex were in the range 17.5 – 29°C. A net and gs dropped below half its maximum value when leaf temperatures were below 11.5°C and above 35.7°C. Transpiration rates (E) were strongly related to leaf temperature; E increased as leaf temperature increased and the highest E rates were monitored in June, despite a 46% decrease in g s. Leaf water loss from transpiration, during the drought period, could result in leaf water stress which would exacerbate heat effects on photosynthesis. During summer, the increase in leaf temperatures decreased g s which in turn decreased A net. Consequently, stomatal control in Quercus ilex may be considered as an adaptive strategy during drought.  相似文献   

2.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2].  相似文献   

3.
Trees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long-term records of tree-ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid-20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope-derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.  相似文献   

4.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   

5.
Light‐saturated photosynthetic and stomatal responses to elevated CO2 were measured in upper and mid‐canopy foliage of a sweetgum (Liquidambar styraciflua L) plantation exposed to free‐air CO2 enrichment (FACE) for 3 years, to characterize environmental interactions with the sustained CO2 effects in an intact deciduous forest stand. Responses were evaluated in relation to one another, and to seasonal patterns and natural environmental stresses, including high  temperatures, vapour pressure deficits (VPD), and drought. Photosynthetic CO2 assimilation (A) averaged 46% higher in the +200 µmol mol?1 CO2 treatment, in mid‐ and upper canopy foliage. Stomatal conductance (gs) averaged 14% (mid‐canopy) and 24% (upper canopy) lower under CO2 enrichment. Variations in the relative responses of A and gs were linked, such that greater relative stimulation of A was observed on dates when relative reductions in gs were slight. Dry soils and high VPD reduced gs and A in both treatments, and tended to diminish treatment differences. The absolute effects of CO2 on A and gs were minimized whenever gs was low (<0·15 mol m?2 s?1), but relative effects, as the ratio of elevated to ambient rates, varied greatly under those conditions. Both stomatal and non‐stomatal limitations of A were involved during late season droughts. Leaf temperature had a limited influence on A and gs, and there was no detectable relationship between prevailing temperature and CO2 effects on A or gs. The responsiveness of A and gs to elevated CO2, both absolute and relative, was maintained through time and within the canopy of this forest stand, subject to seasonal constraints and variability associated with limiting air and soil moisture.  相似文献   

6.
Models of stomatal conductance (gs) are based on coupling between gs and CO2 assimilation (Anet), and it is often assumed that the slope of this relationship (‘g1’) is constant across species. However, if different plant species have adapted to different access costs of water, then there will be differences in g1 among species. We hypothesized that g1 should vary among species adapted to different climates, and tested the theory and its linkage to plant hydraulics using four Eucalyptus species from different climatic origins in a common garden. Optimal stomatal theory predicts that species from sub‐humid zones have a lower marginal water cost of C gain, hence lower g1 than humid‐zone species. In agreement with the theory that g1 is related to tissue carbon costs for water supply, we found a relationship between wood density and g1 across Eucalyptus species of contrasting climatic origins. There were significant reductions in the parameter g1 during drought in humid but not sub‐humid species, with the latter group maintaining g1 in drought. There are strong differences in stomatal behaviour among related tree species in agreement with optimal stomatal theory, and these differences are consistent with the economics involved in water uptake and transport for carbon gain.  相似文献   

7.
Beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) were grown from seed for two whole seasons at two CO2 concentrations (ambient and ambient + 250 μmol mol?1) with two levels of soil nutrient supply. Measurements of net leaf photosynthetic rate (A) and stomatal conductance (gs) of well-watered plants were taken over both seasons; a drought treatment was applied in the middle of the second growing season to a separate sample of beech drawn from the same population. The net leaf photosynthetic rate of well-watered plants was stimulated in elevated CO2 by an average of 75% in beech and 33% in oak; the effect continued through both growing seasons at both nutrient levels. There were no interactive effects of CO2 concentration and nutrient level on A or gs in beech or oak. Stomatal conductance was reduced in elevated CO2 by an average of 34% in oak, but in beech there were no significant reductions in gs except under cloudy conditions (–22% in elevated CO2). During drought, there was no effect of CO2 concentration on gs in beech grown with high nutrients, but for beech grown with low nutrients, gs was significantly higher in elevated CO2, causing more rapid soil drying. With high nutrient supply, soil drying was more rapid at elevated CO2 due to increased leaf area. It appears that beech may substantially increase whole-plant water consumption in elevated CO2, especially under conditions of high temperature and irradiance when damage due to high evaporative demand is most likely to occur, thereby putting itself at risk during periods of drought.  相似文献   

8.
Mesophyll conductance (gm) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well‐watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN) under drought conditions was related to a decline in gm and in stomatal conductance (gs). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm, its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc/S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.  相似文献   

9.
This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi‐arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (Anet), stomatal conductance (gs) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol?1 or ambient CO2 concentrations (approximately 390 µmol mol?1). Mean Anet (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO2] than previously found in FACE‐grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry‐land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO2] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO2], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO2] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates.  相似文献   

10.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

11.
Conifers growing at high elevations need to optimize their stomatal conductance (gs) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high‐elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site‐ and species‐specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of Ldecidua is >2 times higher, shows a more plastic response to temperature, and down‐regulates gs stronger during atmospheric drought compared to Pabies. These differences allow Ldecidua to exert more efficient water use, adjust to site‐specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of Ldecidua compared to Pabies provide new insights into species‐specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.  相似文献   

12.
The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO2, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO2 regimes (ambient and double ambient CO2 concentration) and two temperatures (ambient and +2.2°C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150‐day experiment. Elevated CO2 significantly increased the net photosynthetic rate (Anet), intrinsic water‐use efficiency (WUEi) and carbon isotope composition (δ13C) and decreased stomatal conductance (gs) and total chlorophyll concentration based on mass (Chlm) and area (Chla). On the other hand, elevated CO2 decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO2 also increased foliar carbon concentration based on mass (Cm) and area (Ca), nitrogen concentration based on area (Na), carbohydrates concentration (i.e. sucrose, sugar, starch and non‐structural carbohydrates) and the slope of the Anet–Na relationship. However, elevated temperature decreased Cm, Ca and Na. The combination of elevated CO2 and temperature hardly affected SLA, Cm, Ca, Nm, Na, Chlm and Chla. Variables Anet and Na had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO2 and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions.  相似文献   

13.
High air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (Anet) and stomatal conductance (gs). However, evidence for decoupling of gs from Anet under extreme heat has been found. Such a response both enhances survival of leaves during heat events but also quickly depletes available water. To understand the prevalence and significance of this decoupling, we measured leaf gas exchange in 26 tree and shrub species growing in the glasshouse or at an urban site in Sydney, Australia on hot days (maximum Tair > 40°C). We hypothesized that on hot days plants with ample water access would exhibit reduced Anet and use transpirational cooling leading to stomatal decoupling, whereas plants with limited water access would rely on other mechanisms to avoid lethal temperatures. Instead, evidence for stomatal decoupling was found regardless of plant water access. Transpiration of well-watered plants was 23% higher than model predictions during heatwaves, which effectively cooled leaves below air temperature. For hotter, droughted plants, the increase in transpiration during heatwaves was even more pronounced—gs was 77% higher than model predictions. Stomatal decoupling was found for most broadleaf evergreen and broadleaf deciduous species at the urban site, including some wilted trees with limited water access. Decoupling may simply be a passive consequence of the physical effects of high temperature on plant leaves through increased cuticular conductance of water vapor, or stomatal decoupling may be an adaptive response that is actively regulated by stomatal opening under high temperatures. This temperature response is not yet included in any land surface model, suggesting that model predictions of evapotranspiration may be underpredicted at high temperature and high VPD.  相似文献   

14.
基于FvCB模型的叶片光合生理对环境因子的响应研究进展   总被引:7,自引:0,他引:7  
唐星林  曹永慧  顾连宏  周本智 《生态学报》2017,37(19):6633-6645
为提高叶片光合速率并更好地理解叶片光合生理对环境因子变化的响应机制,FvCB模型(C_3植物光合生化模型)常用于分析不同环境条件下CO_2响应曲线并预测叶片活体内光合系统的内在变化状况。系统介绍了FvCB模型的建立、发展过程和拟合方法等基本理论,综述了该模型在叶片光合生理对光、CO_2、水、温度和N营养等环境因子变化的响应机制中的应用研究。为进一步完善FvCB模型并更好地理解叶片活体内光合系统对环境因子变化的响应机制,未来拟加强以下研究:1)羧化速率与光合电子传递速率之间的联系;2)叶肉导度的具体组分及其对FvCB模型参数估计的影响;3)叶片气孔导度和叶肉导度对环境因子变化的调控机制。  相似文献   

15.
We assessed the daily time‐courses of CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance for water vapour (gs), leaf water potential ( Ψ w) and tree transpiration in a wet and a dry season for three late‐stage canopy rainforest tree species in French Guiana differing in leaf carbon isotope composition ( δ 13C). The lower sunlit leaf δ 13C values found in Virola surinamensis ( ? 29·9‰) and in Diplotropis purpurea ( ? 30·9‰), two light‐demanding species, as compared to Eperua falcata ( ? 28·6‰), a shade‐semi‐tolerant species, were clearly associated with higher maximum gs values of sunlit leaves in the two former species. These two species were also characterized by a high sensitivity of gs, sap flow density (Ju) and canopy conductance (gc) to seasonal soil drought, allowing maintenance of high midday Ψ w values in the dry season. The data for Diplotropis provided an original picture of increasing midday Ψ w with increasing soil drought. In Virola, stomata were extremely sensitive to seasonal soil drought, leading to a dramatic decrease in leaf and tree transpiration in the dry season, whereas midday Ψ w remained close to ? 0·3 MPa. The mechanisms underlying such an extremely high sensitivity of stomata to soil drought remain unknown. In Eperua, gs of sunlit leaves was non‐responsive to seasonal drought, whereas Ju and gc were lower in the dry season. This suggests a higher stomatal sensitivity to seasonal drought in shaded leaves than in sunlit ones in this species.  相似文献   

16.
Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO2 assimilation (A net), stomatal conductance (g s), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUEday) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO2 uptake responding to shifts in nighttime air temperature and humidity. The lowest WUEday occurred during time periods with extreme high and low air vapor pressure deficit (D a). The diurnal with the highest D a had low WUEday due to minimal net carbon gain across the 24 h period. Low WUEday was also observed under conditions of low D a; however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D a confirmed the relationship between D a and g s. Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.  相似文献   

17.
Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.  相似文献   

18.
In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO2] (~ 50 µmol mol?1), and, thus a non‐destructive‐in vivo method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, gs, and mesophyll conductance to CO2, gm) and biochemical limitations to photosynthesis (A) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 mm NaCl to the irrigation water. Two sets of ACi curves were measured. A first set of standard ACi curves (i.e. without pre‐conditioning plants at low [CO2]), were generated for salt‐stressed plants. A second set of ACi curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO2] of ~ 50 µmol mol?1 for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and gs increased to similar values in control and salt‐stressed plants of both cultivars. After gs had approached the maximum value, the ACi response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard ACi curves, showed low values of the Jmax (maximum rate of electron transport) to Vcmax (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the ACi curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard ACi responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (Journal of Experimental Botany 44, 907–920, 1993) in a survey of 109 C3 species. These findings clearly indicates that: (1) salt stress did affect gs and gm but not the biochemical capacity to assimilate CO2 and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (r2 = 0.68) between gm and gs, and, thus, changes of gm can be as fast as those of gs; (3) the estimates of photosynthetic capacity based on ACi curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C3 photosynthesis model parameterization using in vitro‐measured and in vivo‐measured kinetics parameters was compared. Applying the in vivo‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.  相似文献   

19.
Stands of groundnut (Arachis hypogaea L. cv. Kadiri‐3) were grown in controlled environment glasshouses at mean atmospheric CO2 concentrations of 375 or 700 μmol mol?1 and daily mean air temperatures of 28 or 32°C on irrigated or drying soil profiles. Leaf water (Ψl) and solute potential (Ψs), relative water content (RWC), stomatal conductance (gl) and net photosynthesis (Pn) were measured at midday for the youngest mature leaf throughout the growing season. Elevated CO2 and temperature had no detectable effect on the water relations of irrigated plants, but higher values of RWC, Ψl and Ψs were maintained for longer under elevated CO2 during progressive drought. Turgor potential (Ψp) reached zero when Ψl declined to ?1.6 to ?1.8 MPa in all treatments; turgor was lost sooner when droughted plants were grown under ambient CO2. A 4°C increase in mean air temperature had no effect on Ψs in droughted plants, but elicited a small increase in Ψl; midday gl values were lower under elevated than under ambient CO2, and Ψl and gl declined below ?1.5 MPa and 0.25 cm s?1, respectively, as the soil dried. Despite the low gl values recorded for droughted plants late in the season, Pn was maintained under elevated CO2, but declined to zero 3 weeks before final harvest under ambient CO2. Concurrent reductions in gl and increases in water use efficiency under elevated CO2 prolonged photosynthetic activity during drought and increased pod yields relative to plants grown under ambient CO2. The implications of future increases in atmospheric CO2 for the productivity of indeterminate C3 crops grown in rainfed subsistence agricultural systems in the semi‐arid tropics are discussed.  相似文献   

20.
The impact of mixed infection of grapevine leafroll‐associated virus 1 and 3 (GLRaV‐1&‐3) on physiological performance of the Portuguese grapevine variety ‘Touriga Nacional’ was evaluated during 3 years with the main purpose of understanding the drastic reduction in yield. Overall, gas exchange was negatively affected in leaves with these leafroll virus infections. Particularly at ripeness stage, the reduction in stomatal conductance (gs) was higher than in net CO2 assimilation rate (A), leading to higher intrinsic water use efficiency (A/gs) in infected leaves. However, the decrease in gs and A were not a consequence of the decrease in bulk water potential, as the water index/normalised difference vegetation index ratio suggested similar magnitude for both treatments. The maximum quantum efficiency of photosystem II was unaffected by GLRaV‐1&‐3, whereas quantum effective efficiency of PSII, apparent electron transport rate and photochemical quenching significantly decreased in infected leaves and these was paralleled by a significant increase of non‐photochemical quenching. Relative to carbon metabolism, the analyses of the net CO2 assimilation rate/photosynthetic photon flux density (A/PPFD) and net CO2 assimilation rate/internal CO2 concentration (A/Ci) curves revealed that virus infection had a negative effect on light saturated rate of CO2 fixation at high irradiances and carboxylation efficiency but, in contrast, apparent quantum yield of CO2 fixation was significantly higher. Meanwhile, the presence of GLRaV‐1&‐3 resulted in a marked decrease in photosynthetic pigments, soluble sugars and soluble proteins contents, while starch and anthocyanins were significantly improved. N, P, Ca, S and Fe leaf concentrations significantly decreased, while K, Mg, B, Cu, Zn and Mn were unaffected by these two leafroll virus species. Infected plants showed a significant decrease in yield, mainly due to a lower cluster weight. These results emphasised the important role of GLRaV‐1&‐3 as a biotic stress for the grapevine physiology and consequently to yield attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号