首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

2.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

3.
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared with the relatively resistant Fischer F344/N rat, is related to a hyporesponsive hypothalamopituitary-adrenal axis to inflammatory and other stress mediators. Because serotonin (5-HT) and the 5-HT1A receptor are important stimulators of this axis, we have investigated the levels of 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites, 5-HT1A mRNA, 5-HT, and 5-hydroxyindoleacetic acid in various brain regions of Lewis, outbred Harlan Sprague Dawley, and Fischer F344/N rats. Lewis rats expressed significantly fewer hippocampal and frontal cortical 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites and less 5-HT1A mRNA than Harlan Sprague Dawley and Fischer F344/N rats. Adrenalectomy increased the number of 8-[3H]hydroxy-2,3-(di-n-propylamino)tetralin binding sites and 5-HT1A mRNA expression in the hippocampus of all three strains. Levels of hippocampal 5-HT in Fischer F344/N rats were significantly greater than levels detected in the same regions from Lewis and Harlan Sprague Dawley rats. Hypothalamic 5-HT and 5-hydroxyindoleacetic acid levels in Harlan Sprague Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindoleacetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the activity and responsiveness of the hypothalamopituitary-adrenal axis.  相似文献   

4.
Three pharmacologically distinct high-affinity [3H]serotonin ([3H]5-HT) binding sites were identified in spinal cord synaptosomes. [3H]5-HT competition studies using selective 5-HT1A receptor ligands indicated that approximately 25% of high-affinity synaptosomal [3H]5-HT binding was inhibited by 5-HT1A-selective compounds, an estimate consistent with [3H](+-)-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) saturation experiments in which 5-HT1A receptors were directly labeled. [3H]5-HT competition studies using high-affinity 5-HT1B compounds performed in the presence of 100 nM 8-OH-DPAT (to block 5-HT1A receptors) indicated that approximately 26% of all specific, high-affinity [3H]5-HT binding to spinal cord synaptosomes was to 5-HT1B receptors. [3H]5-HT competition studies performed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (to block 5-HT1A and 5-HT1B receptors, respectively) indicated that the remaining 49% of [3H]5-HT binding did not possess the pharmacologic profile previous reported for 5-HT1C, 5-HT1D, 5-HT1E, 5-HT2, or 5-HT3 receptors. This residual 49% of [3H]5-HT binding to spinal cord synaptosomes observed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (subsequently referred to as "5-HT1S") displayed high affinity and saturability (KD = 4.7 nM) in association/dissociation and saturation experiments. Addition of 300 microM GTP or the nonhydrolyzable form of GTP, 5'-guanylylimidodiphosphate, inhibited [3H]5-HT binding to 5-HT1S receptors in saturation experiments by 35 and 57%, respectively, whereas ATP was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

6.
N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) treatment, both in vitro and in vivo, results in an irreversible blockade of cortical S2 5-hydroxytryptamine (serotonin) receptors. Incubation of rat cortical homogenates with EEDQ in vitro results in a concentration-dependent (EC50 approximately 5 microM) and time-dependent decrease in the Bmax of [3H]ketanserin-labeled S2 serotonin receptors. Extensive washing of the homogenate following in vitro or in vivo EEDQ treatment does not result in an increase in the amount of [3H]ketanserin binding, indicating that EEDQ acts to modify irreversibly cortical S2 serotonin receptors. That the modification of S2 receptor binding by EEDQ occurs at the recognition site of the receptor is indicated by the finding that coincubation with the S2 receptor antagonist ketanserin, but not the D2 3,4-dihydroxyphenylethylamine (dopamine) receptor antagonist domperidone, selectively protects against the irreversible blockade of S2 serotonin receptors. Peripheral administration of EEDQ results in a dose-dependent reduction in cortical S2 serotonin receptors with maximal effects (approximately 90% reduction) observed following 10 mg/kg (i.p.). Seven days following peripheral administration of EEDQ there is a recovery of S2 serotonin receptors back to 74% of the original receptor population. These data demonstrate that EEDQ in vitro and in vivo acts as an irreversible antagonist of S2 serotonin receptors and that it can be used to investigate the recovery rate of these receptors.  相似文献   

7.
Co-incubation of rat cortical membranes with 10(-4) M GTP results in a competitive inhibition of 5-hydroxytryptamine1A (5-HT1A) receptor binding sites labeled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT). Preincubation of cortical membranes with 10(-4) M GTP does not significantly change either KD or Bmax values, indicating that the effect of GTP is reversible. By contrast, GTP gamma S and 5'-guanylylimidodiphosphate (GppNHp) are nonhydrolyzable analogues of GTP which lengthen the time course of guanine nucleotide activation of guanine nucleotide binding proteins (G proteins) and thereby alter G protein-receptor interactions. These nonhydrolyzable GTP analogues were used to characterize the effects of persistent alterations in G proteins on [3H]8-OH-DPAT binding to 5-HT1A receptors. Co-incubation of rat cortical membranes with either 10(-4) M GTP gamma S or GppNHp results in a decrease in both the affinity and apparent density of 5-HT1A binding sites. Co-incubation with the nonhydrolyzable nucleotides reduces the affinity of [3H]8-OH-DPAT binding by 65-70% and lowers the density of the binding site by 53-61%. Similarly, preincubation of membranes with a 10(-4) M concentration of either GTP gamma S or GppNHp significantly increases the KD value and reduces the Bmax value of [3H]8-OH-DPAT binding. These results indicate that GTP gamma S and GppNHp induce persistent changes in 5-HT1A receptor-G protein interactions that are reflected as a decrease in the density of binding sites labeled by [3H]8-OH-DPAT.  相似文献   

8.
The synthesis of a tritiated derivative of the 5-HT1A photoaffinity probe 8-methoxy-2-[N-n-propyl, N-3-(2-nitro-4-azidophenyl)aminopropyl]aminotetralin ([3H]8-methoxy-3'-NAP-amino-PAT) allowed the use of this probe for attempting the irreversible labeling of specific binding sites in rat brain membranes. Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis of proteins solubilized from hippocampal microsomal membranes that had been incubated with 20 nM [3H]8-methoxy-3'-NAP-amino-PAT under UV light revealed a marked incorporation of 3H label into a 63-kilodalton protein termed PI. As expected of a possible correspondence between PI and 5-HT1A receptor binding sites, 3H labeling by the photoaffinity probe could be prevented by selective 5-HT1A ligands such as 8-hydroxy-2-(di-n-propylamino)tetralin, ipsapirone, buspirone, and gepirone and by N-ethylmaleimide, but not by the 5-HT2 antagonist ketanserin, noradrenaline- and dopamine-related drugs, monoamine oxidase inhibitors, and chlorimipramine. Furthermore, the regional and subcellular distributions of PI were identical to those of specific 5-HT1A binding sites. These results indicated that the binding subunit of the 5-HT1A receptor is a 63-kilodalton protein with a functionally important sulfhydryl group(s).  相似文献   

9.
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3:5 cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3:5cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels.  相似文献   

10.
Serotonin 5-HT1A receptors in rat hippocampal membranes were solubilized by 10 mM 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and chromatographed on various gels in an attempt to design a relevant protocol for their (partial) purification. In particular, an affinity gel made of the 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) derivative 8-methoxy-2-[(N-propyl, N-butylamino)amino]tetralin (8-MeO-N-PBAT) coupled to Affigel 202 was specially developed for this purpose. First, studies of the effects of various compounds (detergents, lipids, reducing agents, sugars, etc.) on the specific binding of [3H]8-OH-DPAT and on the rate of heat-induced inactivation of solubilized 5-HT1A sites led to a buffer composed of 50 mM Tris-HCl, 50 microM dithiothreitol, 1 mM CHAPS, 10% glycerol, 0.1 mM MnCl2, and 50 micrograms/ml of cholesteryl hemisuccinate, pH 7.4, ensuring a high degree of stability of solubilized 5-HT1A sites, compatible with chromatographic analyses for 2-4 days at 4 degrees C. Adsorption and subsequent elution of [3H]8-OH-DPAT specific binding sites were found with several chromatographic gels, including wheat germ agglutinin-agarose, phenyl-Sepharose, hydroxylapatite-Ultrogel, diethylaminoethyl (DEAE)-Sepharose, and DEAE-Sephacel. Similarly, 8-MeO-N-PBAT-Affigel 202 allowed the adsorption and subsequent elution (by 1 mM 5-HT) of active 5-HT1A binding sites solubilized from rat hippocampal membranes. The two-step chromatography using 8-MeO-N-PBAT-Affigel 202 followed by wheat germ agglutinin-agarose gave a fraction enriched (by at least 400-fold) in 5-HT1A sites. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this partially purified fraction revealed a major protein band with Mr close to 60,000.  相似文献   

11.
There is a lack of radioactive probes, particularly radioiodinated probes, for the direct labeling of serotonin-1B (5-HT1B) and serotonin-1D (5-HT1D) binding sites. Serotonin-O-carboxymethylglycyltyrosinamide (S-CM-GTNH2) was shown previously to be specific for these two subtypes; we, therefore, linked a 125I to its tyrosine residue. Biochemical and pharmacological properties of S-CM-G[125I]TNH2-binding sites were studied by quantitative autoradiography on rat and guinea pig brain sections. S-CM-G[125I]TNH2 binding is saturable and reversible with a KD value of 1.3 nM in the rat and 6.4 nM in the guinea pig. Binding is heterogeneous, paralleling the anatomical distribution of 5-HT1B sites in the rat and of 5-HT1D sites in the guinea pig. The binding of 0.02 nM S-CM-G[125I]TNH2 was inhibited by low concentrations of 5-HT, S-CM-GTNH2, CGS 12066 B, 5-methoxytryptamine, and tryptamine in both species. Propranolol inhibited the radioligand binding with a greater affinity in the rat than in the guinea pig. Conversely, 8-hydroxy-2-(di-n-propylamino)tetralin inhibited S-CM-G[125I]TNH2 binding with a greater affinity in the guinea pig than in the rat. Other competitors, specific for 5-HT1C, 5-HT2, 5-HT3, and adrenergic receptors, inhibited S-CM-G[125I]TNH2 binding in rat and guinea pig substantia nigra and in other labeled structures known to contain these receptors, but only at high concentrations. S-CM-G[125I]TNH2 is then a useful new probe for the direct study of 5-HT1B and 5-HT1D binding sites.  相似文献   

12.
Previous studies on central 5-hydroxytryptamine1A (5-HT1A) receptors have consistently shown the existence of a GTP-insensitive component of agonist binding, i.e., binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) that persists in the presence of 0.1 mM GTP or guanylylimidodiphosphate (GppNHp). The molecular basis for this apparent heterogeneity was investigated pharmacologically and biochemically in the present study. The GppNHp-insensitive component of [3H]8-OH-DPAT binding increased spontaneously by exposure of rat hippocampal membranes or their 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate-soluble extracts to air; it was reduced by preincubation of solubilized 5-HT1A binding sites in the presence of dithiothreitol and, in contrast, reversibly increased by preincubation in the presence of various oxidizing reagents like sodium tetrathionate or hydrogen peroxide. In addition, exposure of hippocampal soluble extracts to short-cross-linking reagents specific for thiols produced an irreversible increase in the proportion of GppNHp-insensitive over total [3H]8-OH-DPAT binding. The pharmacological properties of this GppNHp-insensitive component of [3H]8-OH-DPAT binding were similar to those of 5-HT1A sites in the absence of nucleotide. Sucrose gradient sedimentation of solubilized 5-HT1A binding sites treated by dithiothreitol or sodium tetrathionate showed that oxidation prevented the dissociation by GTP of the complex formed by the 5-HT1A receptor binding subunit (R[5-HT1A]) and a guanine nucleotide-binding protein (G protein). Moreover, the oxidation of -SH groups by sodium tetrathionate did not prevent the inactivation of [3H]8-OH-DPAT specific binding by N-ethylmaleimide, in contrast to that expected from an interaction of both reagents with the same -SH groups on the R[5-HT1A]-G protein complex. These data suggest that the appearance of GTP-insensitive [3H]8-OH-DPAT specific binding occurs as a result of the (spontaneous) oxidation of essential -SH groups (different from those preferentially inactivated by N-ethylmaleimide) on the R[5-HT1A]-G protein complex.  相似文献   

13.
Rat hippocampal 5-hydroxytryptamine1A (5-HT1A) binding sites were solubilized with a yield of 34% using 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS, 10 mM) as detergent. Kinetic analyses of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) binding indicated that the 5-HT1A sites exhibit the same properties in the soluble form as in the membrane-bound form. Furthermore, a positive correlation (r = 0.988) was found between the respective pIC50 values of a series of agonists and antagonists to inhibit [3H]8-OH-DPAT binding to either soluble or membrane-bound 5-HT1A sites. Gel filtration through Sephacryl S-400 as well as chromatography on wheat germ agglutinin (WGA)-agarose did not affect the modulation by guanine nucleotides (5'-guanylylimidodiphosphate) of [3H]8-OH-DPAT binding which suggests that the 5-HT1A binding subunit is a glycoprotein tightly attached to a G protein even in its soluble form. The [3H]8-OH-DPAT binding material eluted from Sephacryl S-400 had an apparent molecular mass of 155 kilodaltons, as expected from a heterodimer with one binding subunit (approximately 60 kilodaltons) and one G protein (approximately 80 kilodaltons). Marked enrichment in 5-HT1A binding sites relative to other soluble proteins was found in the peak fractions eluted from Sephacryl S-400 (by sixfold) and WGA-agarose (by 26-fold) columns, suggesting that these chromatographic steps might be of interest for the purification of central 5-HT1A receptors.  相似文献   

14.
Having shown a decrease in serotonin2A receptors in the dorsolateral prefrontal cortex (DLPFC) from schizophrenic subjects, we have now determined if this change was reflective of widespread changes in neurochemical markers in DLPFC in schizophrenia. In Brodmann's area (BA) 9 from 19 schizophrenic and 19 control subjects, we confirmed a decrease in the density of [3H]ketanserin binding to serotonin2A receptors in tissue from the schizophrenic subjects [39 +/- 3.3 vs. 60 +/- 3.6 fmol/mg estimated tissue equivalents (ETE); p < 0.005]. In addition, the density of [3H]muscimol binding to GABA(A) receptors was increased in the schizophrenic subjects (526 +/- 19 vs. 444 +/- 28 fmol/mg ETE; p < 0.02). [3H]YM-09151-2, N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine, [3H]SCH 23390, [3H]mazindol, and N(G)-nitro-L-[3H]arginine binding to BA 9 did not differ between groups, and there was no specific binding of [3H]raclopride or 7-hydroxy-2-(di-n-[3H]propylamino)tetralin to BA 9 from either cohort of subjects. This suggests the density of dopamine D1-like and NMDA receptors, the dopamine transporter, and nitric oxide synthase activity are not altered in BA 9 from schizophrenic subjects. The selective nature of the changes in serotonin2A and GABA(A) receptors in DLPFC could indicate that these changes are involved in the pathology of schizophrenia.  相似文献   

15.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

16.
In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxytryptamine1A A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyan-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16 nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPgammaS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPgammaS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPgammaS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPgammaS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (+/-)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPgammaS (r = 0.97).  相似文献   

17.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

18.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

19.
A series of detergents of varying chemical properties has been tested for solubilisation of bovine caudate nucleus D2 dopamine receptors using [3H]spiperone binding to assay the solubilised sites. The properties of the lysophosphatidylcholine (LPC)- and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS)-solubilised preparations are described in detail. The preparations are truly solubilised, and sucrose density gradient and gel filtration data are reported. Specific [3H]spiperone binding in the LPC-solubilised preparation assayed at 4 degrees C is solely to D2 dopamine receptors. If the assay temperature is raised to 25 degrees C, the amount of specific [3H]spiperone binding is largely unchanged, but it forms a greater proportion of the total [3H]spiperone binding owing to a reduction in nonstereospecific (spirodecanone) [3H]spiperone binding at the higher temperature. The effect of raising the assay temperature is important as it enables more precise determinations of specific [3H]spiperone binding to be made. Part of the specific [3H]spiperone binding at 25 degrees C is to solubilised S2 serotonin receptors in addition to D2 dopamine receptors. Good correlations are observed between the affinities for binding of ligands to the solubilised D2 receptors and corresponding data obtained on membrane-bound receptors. Agonist binding in LPC-solubilised preparations is insensitive to guanine nucleotides. It is speculated that the spirodecanone sites represent, in part, proteolysed or damaged D2 dopamine, or S2 serotonin, receptors. In the CHAPS-solubilised preparation the pharmacological profile of [3H]spiperone binding is unclear when assayed at 4 degrees C, but in assays at 25 degrees C a clear serotonin S2 receptor component of specific [3H]spiperone binding can be discerned.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号