首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined female frequency of 23 populations of the gynodioecious Geranium sylvaticum (Geraniaceae) in Finland. We compared our results to previous results on this species from the 1960s in order to reveal putative changes in female frequencies. Because females may be maintained in gynodioecious populations if their seed production or offspring quality is higher than that of hermaphrodites, we explored reproductive success of females and hermaphrodites in detail in 11 populations for two consecutive years. Female frequencies varied from 0.4 to 27.2%; this variation is similar to that observed in the 1960s. Contrary to previous results that indicated lower seed production in females, females produced 1.2 and 1.7 times more seeds per flower than hermaphrodites in 2000 and 2001, respectively. Females also had higher fruit set than hermaphrodites. Thus, higher seed production of females partly explains the maintenance of gynodioecy in this species. Furthermore, female frequency correlated negatively with relative seed fitness of hermaphrodites suggesting that relative seed fitness is related to population sex ratio. Female frequency and the distance of the population from the most southern population also tended to correlate positively, suggesting that harsher environmental conditions in the north may benefit female plants. Given the observed yearly variation, our results also highlight the importance of temporal variation for the relative seed fitness of females and hermaphrodites.  相似文献   

2.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   

3.
Variation in sex expression, flowering pattern, and seed production was studied in the self-compatible perennial herb Geranium maculatum in Illinois and Indiana. In a survey of eight populations, female (male-sterile) plants were found in seven (frequencies ranging from 0.5% to 24.3% [median 4.2%]), and intermediate plants (with partly reduced male function) were found in all populations. Gender variation and sexual differences in reproductive characters were studied in detail in two populations. One population consisted of 5% female, 27% intermediate, and 68% hermaphrodite plants; the other consisted of 1% female, 20% intermediate, and 79% hermaphrodite plants. Females produced smaller flowers and began flowering earlier than hermaphrodites. Intermediates produced flowers of an intermediate size and began flowering as early as females. Females and hermaphrodites did not differ in flower number, vegetative size, flowering frequency, survival, or seed size. However, females produced 1.6 times more seeds than hermaphrodites. Intermediates produced 1.3–1.6 times more seeds than hermaphrodites. Some between-year variation in sex expression was observed. Hand-pollination with outcross pollen produced two to four times as many seeds as hand-pollination with self-pollen. A lower outcrossing rate in hermaphrodites than in females may at least partly explain the lower seed set in hermaphrodites. The higher seed production of females, and possibly the high fecundity of the intermediates, should contribute to the maintenance of this sexual polymorphism.  相似文献   

4.
In flowering plants, the evolution of dimorphic breeding systems from monomorphic ancestors can be associated with dry environments. One hypothesis to explain this pattern is that seed fertility of hermaphrodites decreases more than seed fertility of females under dry conditions, so that females have greater relative fitness. This could occur if seed production of hermaphrodites is more resource-limited than that of females, or shifts in pollination increase levels of selfing and inbreeding depression in hermaphrodites. Here we assess the role of dry environments in promoting a female fitness advantage in Wurmbea biglandulosa by focusing on monomorphic and dimorphic populations that occur along a longitudinal gradient of decreasing rainfall. Dimorphic populations occurred in sites with higher temperatures, lower rainfall and lower soil moisture. Overall, females had greater seed fertility than did hermaphrodites from monomorphic populations, which in turn had greater seed fertility than hermaphrodites from dimorphic populations. Ovuliferous flower and ovule production by the three gender morphs and seed fertility of females and hermaphrodites in monomorphic populations did not vary with soil moisture. By contrast, seed fertility of hermaphrodites in dimorphic populations was positively related to soil moisture. Accordingly, female frequency was higher in those sites where hermaphrodites produced relatively fewer seeds. Taken together our results indicate that dry environments promote the establishment of females by decreasing the relative seed fitness of hermaphrodites. Moreover, because seed fertility of hermaphrodites in monomorphic populations did not vary with soil moisture, resource limitation of female function may play only a minor role in the establishment of females. Other factors such as shifts in pollination and mating patterns of hermaphrodites could be involved. Key words:breeding system evolution, environmental stress, gender dimorphism, gynodioecy, sex ratio variationCo-ordinating editor: J.F. Stuefer  相似文献   

5.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

6.
We describe the breeding system of an autotetraploid trioecious cactus, Pachycereus pringlei, provide estimates of the fitnesses of males and females relative to that of hermaphrodites, and discuss the role played by pollinators in the maintenance of three sexual morphs. Relatively high frequencies of females (45%) and males (26%) exist in coastal desert populations around Bahia Kino, Sonora, Mexico. They differ from hermaphrodites in flower size (females only), initiation of the flowering season, number of flowers produced per night and per season, sucrose content of nectar, and, in females, number of fruits produced per season under open pollination and in response to hand-pollination. Major similarities between the sex classes include overall plant size, nectar volume per flower, percent fruit set in open-pollinated flowers of females and hermaphrodites, seed mass and number of seeds per fruit, and pollen mass per flower in males and hermaphrodites. Hermaphrodites are self-compatible, and the selfing rate is high (65%). Levels of inbreeding depression in selfed fruits and seeds appear to be low. Fruit set is strongly pollinator-dependent in females but much less so in hermaphrodites. Relative fitness of males and females, as measured by annual production of pollen or seeds, is at least 1.5 times higher than that of the corresponding sex function in hermaphrodites. Given the high selfing rate and apparent lack of inbreeding depression, these fitness differences are insufficient to explain the occurrence of trioecy in this species.  相似文献   

7.
BACKGROUND AND AIMS: For the maintenance of gynodioecy (i.e. the coexistence of female and hermaphroditic plants), females need to compensate for the lack of pollen production through higher seed production or better progeny quality compared to hermaphrodites. In Geranium sylvaticum, females produce more seeds per flower than hermaphrodites. This difference in seed production might be modified by biological interactions with pollinators and herbivores that may favour one sex and thus affect the maintenance of gynodioecy. METHODS: Sexual dimorphism in flower size and flowering phenology, and in attractiveness to pollinators, pre-dispersal seed predators and floral herbivores were examined in natural populations of G. sylvaticum. KEY RESULTS: Pollinators preferred hermaphrodites 25 % more often than females in two of the three study populations, and floral herbivores attacked hermaphrodites 15 % more often than females in two of the six study populations. These preferences might be explained by the larger flower size of hermaphrodites. In contrast, seed predators did not prefer either sex. CONCLUSIONS: The data suggest that pollinator preference does not benefit females, whereas the higher floral herbivory of hermaphrodites might enhance the maintenance of females in G. sylvaticum. Thus, although the data support the view that ecological factors may contribute to the maintenance of gynodioecy, they also suggest that these contributions may vary across populations and that they may function in opposite directions.  相似文献   

8.
I investigated whether soil moisture affects relative fitness of females and hermaphrodites and sex ratio in a gynodioecious plant with nuclear-cytoplasmic sex inheritance. I contrast these results with those from species with strictly nuclear sex inheritance. I performed a manipulative watering experiment on seed fitness of the two sexes, and field studies measuring seed fitness and sex ratio as a function of soil moisture. In the dry site, watered hermaphrodites produced approximately twice as many seeds as unwatered hermaphrodites, with little treatment effect on female seed production. Over a natural soil moisture gradient, the ratio of female to hermaphrodite seed production was higher in dry than in wet sites. These data show that the seed fitness advantage of females is a function of soil moisture. Despite this, regression of soil moisture on the sex ratio of 23 populations was not significant. These results indicate a sex-dependent effect of soil moisture on resource allocation to seeds that does not translate into a strong effect on sex ratio. This is consistent with theory based on genomic conflict in which sex ratios are predicted to be only partly determined by fitness differences of the sexes.  相似文献   

9.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

10.
In subdioecious populations, functional female, male and hermaphrodite individuals coexist. Subdioecy may be a transitional state towards dioecy or a breakdown of dioecy, although lability in sex expression may maintain subdioecy as a stable condition. To better understand the ecological aspects involved in sex ratio dynamics and breeding system evolution, we studied the pollination and female fitness components of female and hermaphrodite individuals of the subdioecious shrub Fuchsia microphylla. In two natural populations at the Trans‐Mexican Volcanic Belt we estimated female frequency and several reproductive components of female and hermaphrodite plants under natural pollination and experimental pollination treatments. Average female frequency was 42%, and on average, 42.5% of hermaphrodites produced fruits. Female plants showed a 17‐fold female fertility advantage over hermaphrodites through increased fruit production, as the number of seeds and germination rates did not differ between morphs. Hermaphrodite flowers were larger, with similar nectar production and concentration to female flowers, and pollinators did not show consistent morph preferences. Some hermaphrodites produced fruits autonomously, and female flowers excluded from pollinators produced fruits putatively by apomixis. Fruit production in hermaphrodites, but not in females, was related to height, suggesting increased investment of hermaphrodites in the female function at higher resource status. For sex ratios to be at equilibrium, the female fertility advantage should be reduced about eightfold. However, it may be that hermaphrodites are maintained by producing fruits at no cost to the male function at higher resource status, as the gender plasticity hypothesis proposes.  相似文献   

11.
One of the major evolutionary trends in flowering plants is the evolution of unisexual flowers (male or female) from perfect flowers. This transition has occurred repeatedly in many taxa and has generated a wonderful array of variation in sexual expression among species. Theoretical studies have proposed a number of mechanisms to explain how this level of variation could be maintained in natural systems. One possible mechanism is the female compensation hypothesis, which predicts that female mutants require an increase in their seed fitness in order to invade a hermaphroditic system. Using Geranium maculatum, I tested this hypothesis and showed that female mothers produced more and larger seeds than hermaphroditic mothers even though they were indistinguishable in their vegetative traits and the flower production. Seeds from females were also more likely to germinate and produced seedlings with larger above- and belowground biomass. These seedlings were more likely to flower than those from hermaphrodites in at least one of the two populations studied. Combined, these results indicated that females in G. maculatum did compensate for their loss of male function by producing more and better seeds than hermaphrodites. This provides a mechanism for the maintenance of female plants in this species.  相似文献   

12.
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

13.
In gynodioecious plant species with nuclear‐cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production. In the current study, we measured fruit set and seed production in both females and hermaphrodites and the selfing rate in hermaphrodites in two experimental patches that differed in sex ratios in the gynodioecious plant Silene nutans. We found an impact of plant gender, patch, and their interaction, with females suffering from stronger pollen limitation when locally frequent. In the most pollen‐limited situation, the selfing rate of hermaphrodites increased and provided hermaphrodites with a type of reproductive assurance that is not available to females. By integrating both the beneficial (reproductive assurance) and costly effects (through inbreeding depression) of self‐pollination, we showed that whether females did or did not exhibit higher seed fitness depended on the degree of pollen limitation on seed production.  相似文献   

14.
According to sex allocation theory, to maintain a mutant male-sterile plant in a population of hermaphrodites such a plant must compensate its loss of fitness caused by inhibition of pollen production with a higher reproductive success through its female function. In the present study of a gynodioecious population of Silene vulgaris (Caryophyllaceae) I show that hermaphrodites not only benefit from outcrossing, in that progeny from outcrossed flowers are more vigorous than those from selfed flowers within an individual plant, but they also suffer heavily from self-pollination between different flowers of the same individuals, which could be demonstrated in experimentally made male-sterile (emasculated) individuals. Seeds from the emasculation period were heavier and germinated better than when the same individual was an intact hermaphrodite. Naturally male-sterile (female) individuals produced more fruits due to flowers staying open longer for pollen to arrive via some vector. However, the higher seed number alone could not provide the fitness advantage needed for females to be maintained in the population, but females also produced heavier seeds as compared to the hermaphrodites. Differences in seed survival and seedling establishment in the field are expected to add the advantages necessary for female plants to be selectively plausible.  相似文献   

15.
In the gynodioecious plant Cucurbita foetidissima (Cucurbitaceae), females were common in all eight populations examined and made up 32% of adult plants. Females produced 1.5 (SE = 0.2) times as many seeds as did hermaphrodites. The observed difference in seed production alone is not great enough to explain the maintenance of females, especially at their current frequency. Females and hermaphrodites did not differ in number of nodes per stem, stems per plant, internode length, or size of leaves. Females produced more female biomass (fresh or dry weight) than hermaphrodites, but total investment in sexual biomass did not differ. Thus, the biomass of male flowers produced by hermaphrodites was about equal to the extra female biomass produced by females. The results support the existence of a trade-off between male and female reproduction.  相似文献   

16.
The selective maintenance of gynodioecy depends on the relative fitness of the male-sterile (female) and hermaphroditic morphs. Females may compensate for their loss of male fitness by reallocating resources from male function (pollen production and pollinator attraction) to female function (seeds and fruits), thus increasing seed production. Females may also benefit from their inability to self-fertilize if selfing and inbreeding depression reduce seed quality in hermaphrodites. We investigated how differences in floral resource allocation (flower size) between female and hermaphroditic plants affect two measures of female reproductive success, pollinator visitation and pollen receipt, in gynodioecious populations of Geranium richardsonii in Colorado. Using emasculation treatments in natural populations, we further examined whether selfing by autogamy and geitonogamy comprises a significant proportion of pollen receipt by hermaphrodites. Flowers of female plants are significantly smaller than those of hermaphrodites. The reduction in allocation to pollinator-attracting structures (petals) is correlated with a significant reduction in pollinator visitation to female flowers in artificial arrays. The reduction in attractiveness is further manifested in significantly less pollen being deposited on the stigmas of female flowers in natural populations. Autogamy is rare in these protandrous flowers, and geitonogamy accounts for most of the difference in pollen receipt between hermaphrodites and females. Female success at receiving pollen was negatively frequency dependent on the relative frequency of females in populations. Thus, two of the prerequisites for the maintenance of females in gynodioecious populations, differences in resource allocation between floral morphs and high selfing rates in hermaphrodites, occur in G. richardsonii.  相似文献   

17.
Theory predicts that the sex ratio of gynodioecious populations (in which hermaphrodites and females coexist) will be affected by the relative female fitness of females and hermaphrodites, and by founder events and genetic drift in small populations. We documented the sex ratio and size of 104 populations of the gynodioecious, perennial herb Plantago maritima in four archipelagos in eastern Sweden and western Finland (from latitude 53 to 64 degrees N). The sex ratio varied significantly both among and within archipelagos (range 0-70% females, median 6.3% females). The frequency of females was highest in the northernmost archipelago and lowest in the southernmost archipelago. As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. The relative fecundity of female plants (mean seed output per female/mean seed output per hermaphrodite) ranged from 0.43 to 2.16 (median 1.01, n = 12 populations). Among the 12 populations sampled for seed production (four in each of three archipelagos), the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites and by stochastic processes in small populations.  相似文献   

18.
Gynodioecy is a dimorphic breeding system in which female individuals coexist with hermaphroditic individuals in the same population. Females only contribute to the next generation via ovules, and many studies have shown that they are usually less attractive than hermaphrodites to pollinators. Several mechanisms have been proposed to explain how females manage to persist in populations despite these disadvantages. The ‘resource reallocation hypothesis’ (RRH) states that females channel resources not invested in pollen production and floral advertisement towards the production of more and/or larger seeds. We investigated pollination patterns and tested the RRH in a population of Thymus vulgaris. We measured flower display, flower size, nectar production, visitation rates, pollinator constancy and flower lifespan in the two morphs. In addition, we measured experimentally the effects of pollen and resource addition on female reproductive success (fruit set, seed set, seed weight) of the two morphs. Despite lower investment in floral advertisement, female individuals were no less attractive to pollinators than hermaphrodites on a per flower basis. Other measures of pollinator behaviour (number of flowers visited per plant, morph preference and morph constancy) also showed that pollinators did not discriminate against female flowers. In addition, stigma receptivity was longer in female flowers. Accordingly, and contrary to most studies on gynodioecious species, reproductive success of females was not pollen limited. Instead, seed production was pollen limited in hermaphrodites, suggesting low levels of cross‐pollination in hermaphrodites. Seed production was resource limited in hermaphrodites, but not in females, thus providing support for the RRH. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 395–408.  相似文献   

19.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

20.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号