首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arboreal ant mosaics have been intensively investigated, but what generates these mosaics remains poorly understood. In this paper, we hypothesize that the dynamics of arboreal ant mosaics could be better understood by examining the ontogenetic succession of ants in tropical trees. We used three African pioneer tree species as biological models. Lophira alata (Ochnaceae) is a long-lived species that does not furnish any reward (i.e., extra-floral nectaries [EFNs], shelter) to ants, Anthocleista vogelii (Gentianaceae) bears extremely well-developed EFNs, and Barteria fistulosa (Passifloraceae) is a long-lived myrmecophyte providing both EFNs and domatia. For both L. alata and A. vogelii, we noted a succession of different associated ants as the plants grew and aged. Ground-nesting, arboreal-foraging ant species were the first associates, followed by arboreal species that build nests with the leaves of their host trees, together with some species nesting opportunistically in pre-existing cavities. Carton-building Crematogaster species were the last in this succession. The presence of EFNs on A. vogelii slows species turnover, demonstrating that the plant exerts some control over its ant associates. The comparison with B. fistulosa, which generally remains associated with the same plant-ant species during its entire ontogeny, highlights the importance of the selective attractiveness of the trees for their associated ants – or, perhaps, the existence of plant filters that screen arriving ants.  相似文献   

2.
1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass. 2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1 ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground. 3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others. 4. Small‐scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.  相似文献   

3.
Despite years of study, it remains unclear if and to what extent the effects of extra‐floral nectaries (EFNs) on arboreal ants observed on individual trees scale up to larger spatial scales. Here, we address this issue in Brazilian savanna and tested three predictions: (i) Trees with EFN have higher richness of arboreal ant species than trees without; (ii) Arboreal ant species richness increases with the proportion of total EFN‐bearing trees at the site scale, due to a higher occurrence of non‐core ant species; (iii) Ant species composition changes with the proportion of EFN‐bearing trees at the site scale. We sampled arboreal ants in 32 plots with EFN‐bearing trees ranging from 0% to 60% of all trees. We sampled 72 ant species, from which 17 (mostly belonging to Camponotus, Cephalotes and Crematogaster) were identified as core species in at least one of the ant‐EFN networks in the 32 plots. Ant species richness was significantly higher on EFN‐bearing trees. We identified 11 ant species that preferentially occurred on EFN‐bearing trees, all of which were core partners in networks. Species richness at the site scales increased with the proportion of EFN‐bearing trees, regardless of tree density and richness; this pattern was due to a higher occurrence of non‐core ant species. Finally, species composition also varied with the proportion of EFN‐bearing trees. Therefore, we found that the presence of EFNs not only influences arboreal ants on individual trees but also has a substantial effect on the ant‐EFN network on a broader community scale. The increase in non‐core species site scale reveals that this interaction is unlikely to result in substantially enhanced protection services for EFN‐bearing plants.  相似文献   

4.
Due to the invasive character of the exotic Argentine ant (Linepithema humile), its use of aphids in trees, and the ecological importance of the Doñana National Park (Spain) that is invaded by this species, we designed a study to analyze the extent of the problem with native species of arboreal ants. By searching for de visu the species that inhabited 182 cork trees, we found out that the structure of the community of native arboreal ants has been greatly influenced by interspecific competition. The introduced species L. humile and the native species Crematogaster scutellaris and Lasius brunneus are dominant, while Camponotus lateralis and Camponotus truncatus are subordinate species associated with C. scutellaris. The distribution of the species in the trees depends on these relationships. Species richness is determined by tree size, thus, when a tree is large enough all native species may appear together. However, in areas colonized by L. humile, this is the only species occupying the tree, regardless of tree size. L. humile is displacing native arboreal ant species as shown by the fact that from 1992 to 2000 the exotic species occupied 23 new cork trees (of the 182 studied) previously inhabited by native species.  相似文献   

5.
Whereas ant mosaics have been widely recognized and described in tropical ecosystems, data on space partitioning among arboreal termite colonies are rudimentary. During a long term field study in New Guinea, the distribution of arboreal termite species in coconut plantations as well as the extent and dynamics of competition between them were investigated. The three dominant species, Mirrocerotermes biroi, Nasutitermes princeps and N. novarumhebridarum, feed on the same items but never exploit the same tree. The resulting distribution pattern is a mosaic with two peculiarities. First, some extended areas around N. princeps colonies appear unexploited, as this species practices interference competition on a wide scale, defending large territories inter- and intra-specifically. Second, interspecific relations are asymmetrical. In some plantations, large colonies of N. princeps expand their territory by destroying colonies of M. biroi, but when the pressure of N. princeps is relaxed, dense populations of colonies of M. biroi can recolonize the trees in a few years’ time. Territorial boundaries may thus change relatively fast. N. novarumhebridarum often colonizes dead trees and interferes less with the other species. These facts are consistent with each species’ reproductive investment strategy. Hypotheses are proposed to explain how the dominant species can coexist, even in long established plantations.  相似文献   

6.
The four species of the central African genus Barteria show variation in habitat and in degree of association with ants. Whereas B. solida, restricted to submontane forests, attracts opportunistic ants to extrafloral nectar, the three other species, found in lowland rainforests (B. fistulosa, B. dewevrei) and in littoral scrub (B. nigritana), possess stem domatia of varying shapes and degrees of specialisation, hosting either non-specific arboreal ants (B. nigritana, some B. dewevrei) or two large species of ants of the genus Tetraponera Smith, 1852 that are specific to some species of Barteria (B. fistulosa, some B. dewevrei). We aimed to investigate whether this variation represents an evolutionary trend toward increasing specialisation of mutualism or the reduction or loss of myrmecophytic traits. For this, we determined phylogenetic relationships within the genus using DNA sequences (primarily nuclear ITS) and microsatellite genotypes (11 loci) on a large sample of individuals, mostly from Cameroon and Gabon. The two types of markers support an initial dichotomy that groups B. dewevrei with B. nigritana and B. fistulosa with B. solida respectively. Within these pairs, species do not appear reciprocally monophyletic. At microsatellite loci, B. nigritana forms a clade embedded within B. dewevrei; and within both B. solida and B. fistulosa, geographical populations show levels of differentiation similar to that observed between populations of B. solida and B. fistulosa. Geographic distance alone does not account for genetic differentiation between species, which indicates reproductive isolation. Divergence in each of the two pairs implies evolutionary transitions in habitat and in myrmecophytism. Specialised mutualism with specific ant species of the genus Tetraponera has been lost in species found in more marginal habitats.  相似文献   

7.
 On the black cotton soils of the Laikipia ecosystem in Kenya, two swollen-thorn acacia species support nine ant species, four of which are apparently obligate plant-ants. Among the ants, there are five species of Crematogaster, two species of Camponotus, and one each of Tetraponera and Lepisota. Acacia drepanolobium is host to four ant species that are both common and mutually exclusive. These four ant species, and an additional non-exclusive ant species, tend to occur on trees of different sizes, implying a succession of ant occupants. Nonetheless, all four exclusive species occur in substantial proportions on trees of intermediate size. There is direct evidence that an early successional ant species (Tetraponera penzigi) is actively evicted by two late successional ant species in the genus Crematogaster. There was also some evidence of height differentiation among ant species resident on A. seyal. Different acacia-ant species had different direct effects on A. drepanolobium. Extrafloral nectaries were eaten and destroyed only on trees inhabited by Tetraponera. Axillary shoots were eaten only on trees inhabited by C. nigriceps (potentially another early successional ant). This was associated with more new terminal shoots and healthier leaves than other trees, but also the virtual elimination of flowering and fruiting. Different resident acacia-ant species also had characteristic relationships with other insects. Among the four mutually exclusive ant species, only Crematogaster sjostedti was associated with two species of Camponotus, at least one of which (C. rufoglaucus) appears to be a foraging non-resident. A. drepanolobium trees occupied by C. sjostedti were also far more heavily infested with leaf galls than were trees occupied by other ant species. A. drepanolobium trees occupied by C. mimosae and C. sjostedti uniquely had tended adult scale insects. This diversity of ant inhabitants, and their strikingly different relationships with their hosts and other insect species, are examples of coexisting diversity on an apparently uniform resource. Received: 13 November 1995 / Accepted: 16 May 1996  相似文献   

8.
A promising natural enemy for release against the Asian soybean aphid, Aphis glycines Matsumura, in North America is the aphidiine braconid wasp Binodoxys communis (Gahan). The aphid Aphis monardae Oestlund, a native of North America’s tall-grass prairies, is a non-target species that may be at risk from releases of B. communis. This paper describes ecological facets of A. monardae populations in their native habitat that could protect them from attack by this exotic biological control agent. In prairie habitats, A. monardae populations aggregate in flower heads of their host plant, Monarda fistulosa L. On this host plant, aphids are also commonly tended by four ant species, and ant-tended colonies are larger than un-attended colonies. Laboratory studies showed that parasitism rates of A. monardae by B. communis are significantly higher on vegetative M. fistulosa than on M. fistulosa flower heads. In addition, attendance of A. monardae by the ant Lasius neoniger Emery significantly decreased parasitism by B. communis. Ants attacked and killed host-seeking adult parasitoids, and preyed upon B. communis mummies. No evidence was found that B. communis reared from A. monardae are less susceptible to attack by ants than parasitoids reared from A. glycines. M. fistulosa flower heads and attendance by L. neoniger may act as refuges for A. monardae against B. communis. Our work describes spatial refuges as ecological filters that separate non-target organisms from exotic natural enemies. Implications for classical biological control of A. glycines are discussed.  相似文献   

9.
We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression.  相似文献   

10.
The outcome of any interspecific interaction is often determined by the ecological context in which the interacting species are embedded. Plant ontogeny may represent an important source of variation in the outcome of ant–plant mutualisms, as the level of investment in ant rewards, in alternative (non‐biotic) defenses, or both, may be modulated by the plant's developmental stage. In addition, the abundance and identities of the ants involved in the interaction may change during ontogeny of the host‐plant. Here, we evaluated if plant ontogeny affects the interaction between ants and a savanna tree species (Caryocar brasiliense) that produces extrafloral nectar. We found fewer ants per branch and fewer species of ants per tree in juvenile than in reproductive trees of medium and large size. In addition, large‐sized reproductive trees were more likely to host more aggressive ants than were medium‐sized reproductive or juvenile trees. Such differences strongly affected the outcome of the interaction between ants and their host‐plants, as the magnitude of the effect of ants on herbivory was much stronger for large trees than for juvenile ones. The fact that we did not find significant ontogenetic variation in the concentration of leaf tannins suggests that the observed differences in herbivory did not result from a differential investment in chemical defenses among different‐sized plants. Overall, the results of our study indicate that the developmental stage of the host plant is an important factor of conditionality in the interaction between C. brasiliense and arboreal foraging ants.  相似文献   

11.
Summary. One of the most species-rich ant-plant mutualisms worldwide is the palaeotropical Crematogaster-Macaranga system. Although the biogeography and ecology of both partners have been extensively studied, little is known about the temporal structuring and the dynamics of the association. In this study we compared life-history traits of the specific Crematogaster (Decacrema) partner-ants and followed the development of ant colonies on eight different Macaranga host plant species, from colony founding on saplings to adult trees in a snapshot fashion. We found differences in the onset of alate production, queen number and mode of colony founding in the ant species and examined the consequences of these differences for the mutualism with the host plant. The lifespan of some host plants and their specific ant partners seemed to be well matched whereas on others we found an ontogenetic succession of specific partner ants. The partner ants of saplings or young plants often differed from specific partner ants found on larger trees of the same species. Not all specific Crematogaster species can re-colonize the crown region of adult trees, thus facilitating a change of ant species. Therefore lifespan of the ant colony as well as colony founding behaviour of the different partner ant species are important for these ontogenetic changes. The lifespan of a colony of two species can be prolonged via secondary polygyny. For the first time, also primary polygyny (pleometrosis) is reported from this myrmecophytic system.  相似文献   

12.
H. GIBB 《Austral ecology》2012,37(7):789-799
Ecological restoration aims to re‐establish both biodiversity and ecological function in damaged ecosystems. Ants are important drivers of ecological functions and are early colonizers of restored ecosystems. Rates at which ants perform functions are thought to be fuelled by access to plant sugars. In revegetated farmland in south‐eastern Australia, I tested if ant activity on trees, which reflects use of arboreal sugars, follows a predictable trajectory of recovery towards a remnant‐like state. Additionally, I examined whether planting method alters this trajectory by comparing tube stock (TS), which results in low Eucalyptus densities, with direct seeding (DS), which results in high Eucalyptus densities. Replicate sites (n = 5) of young (planted between 1998 and 2001) and old (planted between 1989 and 1994) TS and DS revegetation, pastures and remnants were compared. Activity on trunks was significantly positively correlated with ant tending of Hemiptera in young and old revegetation. In DS plantings, activity and estimated liquid loads on Eucalyptus trees were low and rapidly approached that in remnants, while TS sites remained similar to high values observed in pastures with trees. Patterns for Acacia were less clear, reflecting consistent densities for this species between TS and DS. At the whole‐of‐field scale, planting methods did not differ. Importantly, although trajectories differed, neither TS nor DS sites approached the low activity or estimated liquid loads observed in remnants. Rates of ant use of arboreal sugars and associated sugar‐fuelled processes may thus take considerably longer to recover than the period covered by this study. This finding suggests planting method may affect the trajectory and outcome of revegetation for plant health, as well as sugar‐fuelled ecosystem functions performed by ants.  相似文献   

13.
14.
Rice Vampireweed, Rhamphicarpa fistulosa, was a minor parasitic weed until recently when rice cultivation in sub‐Saharan Africa was expanded into marginal wetlands, that are the parasite's natural habitat. Unlike most of the parasitic weeds, R. fistulosa is facultative, meaning that the parasite is able to complete its life cycle without a host. However, when not connected to a host plant, its biomass and seed production is lower. Because very little is known regarding the germination ecology of the parasite, the main objective of our study was to identify the cues that favour germination. We hypothesised that, first, being a wetland species, germination of R. fistulosa is stimulated by light and high soil moisture. Second, we hypothesised that if host plant presence increases its reproductive output then a germination stimulatory effect from host presence is likely to have developed. A Petri‐dish and pot experiment showed that light and completely saturated soils were a requirement for germination, demonstrating that germination requirements of R. fistulosa are typical of species that grow in environments with fluctuating water levels. A pot experiment in which five infestation levels of R. fistulosa were installed in the absence and presence of a rice plant, showed that host plant presence resulted in a 3.7 times higher seed production rate and a 15% larger average seed size. Despite this reproductive advantage, a pot experiment with three rice cultivars, selected because of their difference in strigolactone production, showed that host plant presence, regardless of the development stage, did not influence the emergence rate of R. fistulosa. In a follow‐up study, the germination stimulation effect of root exudates collected from the same three rice cultivars and a treatment consisting of an artificial germination stimulant (GR24) was compared with a treatment consisting of plain water. In these treatments, seeds of R. fistulosa were compared with seeds of the obligate parasite Striga hermonthica. Germination of S. hermonthica was strongly advanced by the presence of root exudates and GR24 but was completely absent in water, whereas germination of R. fistulosa in all treatments was similar to that in plain water. The absence of a host recognition mechanism at the germination stage suggests that the regulation of germination through light and soil moisture is near optimal. Our finding might also indicate that for this facultative parasitic plant species, a more opportunistic germination strategy is superior. Implications of the findings for management of R. fistulosa in rice cultivation are discussed.  相似文献   

15.
1.?Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2.?We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height?≥?5?cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3.?In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4.?Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5.?Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.  相似文献   

16.
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.  相似文献   

17.
Epiphytes are conspicuous structural elements of tropical forest canopies. Individual tree crowns in lowland forests may support more than 30 ant species, yet we know little about the effects of epiphytes on ant diversity. We examined the composition of arboreal ant communities on Annona glabra trees and their interactions with the epiphytic orchid Caularthron bilamellatum in Panama. We surveyed the ants on 73 trees (45 with C. bilamellatum and 28 lacking epiphytes) and recorded their nest sites and behavioral dominance at baits. We found a total of 49 ant species (in 20 genera), ranging 1–9 species per tree. Trees with C. bilamellatum had higher average (±SD) ant species richness (4.2±2.28) than trees without epiphytes (2.7±1.21). Hollow pseudobulbs (PBs) of C. bilamellatum were used as nest sites by 32 ant species, but only 43 percent of suitable PBs were occupied. Ant species richness increased with PB abundance in trees, but nest sites did not appear to be a limiting resource on A. glabra. We detected no close association between ants and the orchid. We conclude that higher ant species richness in the presence of the orchid is due to bottom‐up effects, especially the year‐round supply of extrafloral nectar. The structure of ant communities on A. glabra partly reflects interference competition among behaviorally dominant species and stochastic factors, as observed in other forests.  相似文献   

18.
The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.  相似文献   

19.
Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics, where dominant ant colonies and species maintain mutually exclusive territories on trees. In turn, we propose that for nourishment of numerous ants of lower competitive capacity, Philodendron and other sources of EFNs might be particularly important.  相似文献   

20.
Street trees planted in urban areas are one of the smallest urban green habitats; however, their role as a valuable refuge for local biota is poorly understood. The aim of this study was to investigate urban street trees as habitat for ants. We found ants on 195 (92%) of 211 street trees studied. Seventeen ant species were collected from five tree species. The two most common ant species were Tetramorium tsushimae (on 112 trees) and Lasius japonicus (on 93 trees). The number of ant species found per tree ranged from 0 to 5, with a mean of 1.55 ± 0.92. The species composition differed significantly among tree species. Nine ant species (Camponotus vitiosus, Lasius alienus, L. japonicus, Nylanderia flavipes, Crematogaster matsumurai, Crematogaster vagula, Monomorium intrudens, T. tsushimae, and Brachyponera chinensis) nested on the trees, mostly in the root zone. Nests were found on 150 trees but were relatively rare on trees with diameter at breast height of less than 40 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号