首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations at multiple sites within the simian virus 40 (SV40) early region yield large T antigens which interfere trans dominantly with the replicative activities of wild-type T antigen. A series of experiments were conducted to study possible mechanisms of interference with SV40 DNA replication caused by these mutant T antigens. First, the levels of wild-type T antigen expression in cells cotransfected with wild-type and mutant SV40 DNAs were examined; approximately equal levels of wild-type T antigen were seen, regardless of whether the cotransfected mutant was trans dominant or not. Second, double mutants that contained the mutation of inA2827, a strong trans-dominant mutation with a 12-bp linker inserted at the position encoding amino acid 520, and various mutations in other parts of the large-T-antigen coding region were constructed. The trans-dominant interference of inA2827 was not affected by second mutations within the p105Rb binding site or the amino or carboxy terminus of large T antigen. Mutation of the nuclear localization signal partially reduced the trans dominance of inA2827. The large T antigen of mutant inA2815 contains an insertion of 4 amino acids at position 168 of large T; this T antigen fails to bind SV40 DNA but is not trans dominant for DNA replication. The double mutant containing the mutations of both inA2815 and in A2827 was not trans dominant. The large T antigen of dlA2433 lacks amino acids 587 to 589, was unstable, and failed to bind p53. Combining the dlA2433 mutation with the inA2827 mutation also reversed the trans dominance completely, but the effect of the dlA2433 mutation on trans dominance can be explained by the instability of this double mutant protein. In addition, we examined several mutants with conservative point mutations in the DNA binding domain and found that most of them were not trans dominant. The implications of the results of these experiments on possible mechanisms of trans dominance are discussed.  相似文献   

2.
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.  相似文献   

3.
J Y Zhu  C N Cole 《Journal of virology》1989,63(11):4777-4786
Linker insertion mutants affecting the simian virus 40 (SV40) large tumor (T) antigen were constructed by inserting a 12-base-pair oligonucleotide linker into restriction endonuclease cleavage sites located within the early region of SV40. One mutant, with the insertion at amino acid 5, was viable in CV-1p and BSC-1 cells, indicating that sequences very close to the amino terminus of large T could be altered without affecting the lytic infection cycle of SV40. All other mutants affecting large T were not viable. In complementation assays between the linker insertion mutants and either a late-gene mutant, dlBC865, or a host range/helper function (hr/hf) mutant, dlA2475, delayed complementation was seen with the 6 of the 10 nonviable mutants. Of these 10 mutants, 5 formed plaques 3 to 4 days later than in control complementations, while complementation by one of the mutants, inA2827, with an insertion at amino acid 520, was delayed more than 1 week. Most mutants which showed delayed complementation replicated less well in Cos-1 cells than did a control mutant, dlA1209, which produced no T antigen. The replication of inA2827(aa520) was reduced by more than 90%. Similar interference with viral DNA replication was seen when CV-1, HeLa, or 293 cells were cotransfected with an origin-defective plasmid encoding wild-type large T antigen and with inA2827(aa520). Only one of the mutant T antigens, inA2807(aa303), was unstable. These results indicate that some of the mutant T antigens interfered with functions of wild-type T required for viral DNA replication. However, not all of the mutants which showed delayed complementation also showed interference with viral DNA replication. This indicates that mutant large T antigens may interfere trans dominantly with multiple activities of wild-type large T antigen.  相似文献   

4.
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain.  相似文献   

5.
Simian virus 40 (SV40) DNA replication requires the coordinated action of multiple biochemical activities intrinsic to the virus-encoded large tumor antigen (T antigen). We report the preliminary biochemical characterization of the T antigens encoded by three SV40 mutants, 5030, 5031, and 5061, each of which have altered residues within or near the ATP binding pocket. All three mutants are defective for viral DNA replication in cultured cell lines. However, while 5030 and 5031 can be complemented in vivo by providing a wild-type T antigen in trans, 5061 exhibits a strong trans-dominant-negative phenotype. In order to determine the basis for their replication defects and to explore the mechanisms of trans dominance, we purified the T antigens encoded by each of these mutants and examined their activities in vitro. The 5061 T antigen had no measurable ATPase activity and failed to hexamerize in response to ATP, and its affinity for the SV40 origin of DNA replication (ori) DNA was not increased by ATP. In contrast, the 5030 and 5031 T antigens exhibited at least some ATPase activity and both readily formed hexamers in the presence of ATP. These mutants differed in that 5030 was very defective in an ori-dependent unwinding assay while 5031 retained significant activity. Both the 5030 and 5031 T antigens bound to ori-containing DNA, but the binding was less efficient than that of wild-type T antigen and was not affected by the presence of ATP. These results suggest that 5030 and 5031 are defective in some aspect of communication between the ATP binding and DNA binding domains and that the ability of ATP to induce T-antigen hexamerization is distinct from its action to increase the affinity for ori. Finally, all three mutants were defective for the ability to support SV40 DNA replication in vitro. Both the 5031 and 5061 T antigens inhibited wild-type-T-antigen-stimulated replication in vitro, while the 5030 T antigen did not. The fact that the 5031 T antigen was trans dominant in the in vitro assays but not in vivo indicates that the in vitro system does not accurately reflect events occurring in vivo.  相似文献   

6.
T antigen and template requirements for SV40 DNA replication in vitro.   总被引:70,自引:7,他引:63       下载免费PDF全文
A cell-free system for replication of SV40 DNA was used to assess the effect of mutations altering either the SV40 origin of DNA replication or the virus-encoded large tumor (T) antigen. Plasmid DNAs containing various portions of the SV40 genome that surround the origin of DNA replication support efficient DNA synthesis in vitro and in vivo. Deletion of DNA sequences adjacent to the binding sites for T antigen either reduce or prevent DNA synthesis. This analysis shows that sequences that had been previously defined by studies in vivo to constitute the minimal core origin sequences are also necessary for DNA synthesis in vitro. Five mutant T antigens containing amino acid substitutions that affect SV40 replication have been purified and their in vitro properties compared with the purified wild-type protein. One protein is completely defective in the ATPase activity of T antigen, but still binds to the origin sequences. Three altered proteins are defective in their ability to bind to origin DNA, but retain ATPase activity. Finally, one of the altered T antigens binds to origin sequences and contains ATPase activity and thus appears like wild-type for these functions. All five proteins fail to support SV40 DNA replication in vitro. Interestingly, in mixing experiments, all five proteins efficiently compete with the wild-type protein and reduce the amount of DNA replication. These data suggest that an additional function of T antigen other than origin binding or ATPase activity, is required for initiation of DNA replication.  相似文献   

7.
A series of mutants of simian virus 40 was constructed by oligonucleotide-directed mutagenesis to study the role of phosphorylation in the functions of large T antigen. Each of the previously mapped phosphorylated serine and threonine residues in large T antigen was replaced by an alanine or cysteine residue or, in one case, by glutamic acid. Mutant DNAs were assayed for plaque-forming activity, viral DNA replication, expression of T antigen, and morphological transformation of rat cells. Viable mutants were isolated, suggesting that modification of some residues is not essential for the biological functions of T antigen. Two of these mutants replicated more efficiently than did the wild type. Seven mutants were partially or completely deficient in viral DNA replication but retained cell transformation activity comparable with that of the wild-type protein. Biochemical analysis of the mutant T antigens demonstrated novel origin DNA-binding properties of several mutant proteins. The results are consistent with the idea that differential phosphorylation defines several functional subclasses of T-antigen molecules.  相似文献   

8.
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.  相似文献   

9.
SV40-transformed simian cells support the replication of early SV40 mutants   总被引:650,自引:0,他引:650  
Y Gluzman 《Cell》1981,23(1):175-182
CV-1, an established line of simian cells permissive for lytic growth of SV40, were transformed by an origin-defective mutant of SV40 which codes for wild-type T antigen. Three transformed lines (COS-1, -3, -7) were established and found to contain T antigen; retain complete permissiveness for lytic growth of SV40; support the replication of tsA209 virus at 40 degrees C; and support the replication of pure populations of SV40 mutants with deletions in the early region. One of the lines (COS-1) contains a single integrated copy of the complete early region of SV40 DNA. These cells are possible hosts for the propagation of pure populations of recombinant SV40 viruses.  相似文献   

10.
Deletion mutants of simian virus 40 (SV40) with lesions at the three DdeI sites near the 3' end of the early region were constructed. Mutants with deletions at 0.203 and 0.219 map units (mu) which did not change the large T antigen reading frame were viable. This extends slightly the upstream boundary for the location of viable mutants with deletions in the 3' end of the A gene. Mutants with frameshift deletions at 0.193 and 0.219 mu were nonviable. These are the first nonviable mutants with deletions in this portion of the A gene. None of the three nonviable mutants with deletions at 0.219 mu produced progeny viral DNA. These three mutants all used the alternate reading frame located in this portion of the SV40 early region. The mutant with a deletion at 0.193 mu, dlA2459, was positive for viral DNA replication and was defective for adenovirus helper function. All of these mutations were located in the portion of the SV40 large T antigen which has no homology to the polyoma T antigens. These results indicate that this portion of large T antigen is required for some late step in the viral growth cycle and suggest that adenovirus helper function is required for productive infection by SV40.  相似文献   

11.
12.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

13.
T Stacy  M Chamberlain    C N Cole 《Journal of virology》1989,63(12):5208-5215
Simian virus 40 (SV40) deletion mutants dlA2459 and dlA2475 express T antigens that lack the normal carboxy terminus. These mutants are called host range/helper function (hr/hf) mutants because they form plaques at 37 degrees C on BSC-1 and Vero monkey kidney cell lines but not on CV-1p monkey kidney cells. Wild-type SV40 can provide a helper function to permit growth of human adenoviruses in monkey kidney cells; the hr/hf mutants cannot. Progeny yields of hr/hf mutants are also cold sensitive in all cell lines tested. Patterns of viral macromolecular synthesis in three cell lines (Vero, BSC-1, and CV-1) at three temperatures (40, 37, and 32 degrees C) were examined to determine the nature of the growth defect of hr/hf mutants. Mutant viral DNA replication was similar to that of the wild type in all three cell lines, indicating that the mutations affect late events in the viral lytic cycle. In mutant-infected Vero cells, in which viral yields were highest, late mRNA levels were similar to those observed during wild-type infection. Levels of viral late mRNA from mutant-infected CV-1 and BSC-1 cells at 32 and 37 degrees C were reduced relative to those of wild-type-infected cells. The steady-state level of the major viral capsid protein, VP1, in mutant-infected CV-1 cells was reduced to the same extent as was late mRNA. The synthesis of agnoprotein could not be detected in mutant-infected CV-1 cells but was readily detected in CV-1 cells infected by wild-type SV40. Primer extension analyses indicated that most late mRNAs from mutant-infected CV-1 cells utilize start sites downstream from the major wild-type cap site (nucleotide 325) and the agnoprotein initiation codon (nucleotide 335). These results indicate that deletion of the carboxyl-terminal domain of T antigen affects viral late mRNA production, both quantitatively and qualitatively. The agnoprotein is detected late in the wild-type SV40 lytic cycle and is thought to play a role in the assembly or maturation of virions. Reduced hr/hf progeny yields could result from decreased capsid protein synthesis and, in the absence of detectable levels of agnoprotein, from inefficient use of available capsid proteins.  相似文献   

14.
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.  相似文献   

15.
DNA helicase activity of SV40 large tumor antigen.   总被引:129,自引:18,他引:111       下载免费PDF全文
Large tumor antigen (T antigen) was extracted from SV40-infected African Green Monkey cells and purified to homogeneity by immunoaffinity chromatography. The purified T antigen preparations unwind DNA duplices of greater than 120 bp in a reaction which is dependent on magnesium ions and ATP hydrolysis. Based on these and other properties of the reaction we classify this newly discovered enzymatic activity as a eukaryotic DNA helicase. The helicase and the known ATPase function of T antigen cosediment with the mono- or dimeric 4-6 S form of T antigen, but not with higher T antigen aggregates. The helicase activity seems to be an intrinsic function of SV40 T antigen. First, several different T antigen-specific monoclonal antibodies interfere with the DNA unwinding activity; monoclonals which are known to reduce the T antigen-specific ATPase most strongly inhibited the helicase reaction. Second, mutant T antigens with impaired ATPase function also showed a reduced DNA unwinding activity.  相似文献   

16.
Regulation of SV40 DNA replication by phosphorylation of T antigen.   总被引:46,自引:5,他引:41       下载免费PDF全文
The role of phosphorylation in regulating the biochemical properties of SV40 large T antigen has been examined. Treatment of purified T antigen with calf intestinal alkaline phosphatase resulted in the removal of 80% of the 32P label. This partially dephosphorylated T antigen displayed an increase in its ability to support DNA replication in vitro. This increase in replication activity was paralleled by an activation of specific DNA binding to site II, a necessary element within the origin of SV40 DNA replication. In contrast, the ATPase activity of dephosphorylated T antigen remained unchanged. These results demonstrate that DNA replication is regulated by phosphorylation of an origin specific DNA binding protein.  相似文献   

17.
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.  相似文献   

18.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

19.
Purified SV40 large T antigen and purified DNA polymerase alpha-primase form a complex detectable by ELISA and by a modified immunoblotting technique. The interaction is specific for the large catalytic subunit of polymerase alpha. The amino terminal 83 amino acids of T antigen are both necessary and sufficient for binding to the polymerase. However, antibody epitopes located in the carboxy terminal ATPase domain of T antigen are masked in the polymerase-T antigen complex, and complex formation is inhibited by an antibody directed against the carboxy terminus of T antigen, suggesting that this region of T antigen, though not required for binding, is in close proximity to the bound polymerase. The affinity of human DNA polymerase alpha for T antigen is approximately 10-fold greater than that of polymerase alpha from calf thymus, consistent with the interpretation that polymerase alpha is at least in part responsible for the primate-specific replication of SV40 DNA in vivo and in vitro. The results suggest that specific protein-protein interaction between DNA polymerase alpha and T antigen plays an important role in viral DNA replication.  相似文献   

20.
trans-dominant defective mutants of simian virus 40 T antigen.   总被引:10,自引:7,他引:3       下载免费PDF全文
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号