首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

2.
Liao CZ  Luo YQ  Fang CM  Chen JK  Li B 《Oecologia》2008,156(3):589-600
Past studies have focused primarily on the effects of invasive plants on litter decomposition at soil surfaces. In natural ecosystems, however, considerable amounts of litter may be at aerial and belowground positions. This study was designed to examine the effects of Spartina alterniflora invasion on the pool sizes and decomposition of aerial, surficial, and belowground litter in coastal marshlands, the Yangtze Estuary, which were originally occupied by two native species, Scirpus mariqueter and Phragmites australis. We collected aerial and surficial litter of the three species once a month and belowground litter once every 2 months. We used the litterbag method to quantify litter decomposition at the aerial, surficial and belowground positions for the three species. Yearly averaged litter mass in the Spartina stands was 1.99 kg m−2; this was 250 and 22.8% higher than that in the Scirpus (0.57 kg m−2) and Phragmites (1.62 kg m−2) stands, respectively. The litter in the Spartina stands was primarily distributed in the air (45%) and belowground (48%), while Scirpus and Phragmites litter was mainly allocated to belowground positions (85 and 59%, respectively). The averaged decomposition rates of aerial, surficial, and belowground litter were 0.82, 1.83, and 1.27 year−1 for Spartina, respectively; these were 52, 62 and 69% of those for Scirpus litter at corresponding positions and 158, 144 and 78% of those for Phragmites litter, respectively. The differences in decomposition rates between Spartina and the two native species were largely due to differences in litter quality among the three species, particularly for the belowground litter. The absolute amount of nitrogen increased during the decomposition of Spartina stem, sheath and root litter, while the amount of nitrogen in Scirpus and Phragmites litter declined during decomposition for all tissue types. Our results suggest that Spartina invasion altered the carbon and nitrogen cycling in the coastal marshlands of China.  相似文献   

3.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

4.
We investigated the roles of flooding, salinity, and plant competition in creating a bimodal zonation pattern of the marsh dominant annual plant, Suaeda salsa, along coastal topographic gradients on the Pacific coast of northern China. In two consecutive years, we manipulated salinity and flooding, salinity, and competition for S. salsa seedlings that had been transplanted into the mudflat, the high marsh, and the upland, respectively. S. salsa plants that had been transplanted into the mudflat were completely eliminated in the non-elevated treatments whereas they performed much better in the 10 cm elevated treatments, regardless of salinity treatments. Although the performance of S. salsa transplanted into the high marsh did not differ between the fresh (watered) and the salt (control) treatments, S. salsa seedling emergence in the high marsh was nearly completely inhibited in the salt treatments. In contrast, a large number of S. salsa seedlings did emerge in the fresh treatments. S. salsa transplanted into the upland performed well when neighbors were removed, whereas it appeared to be strongly suppressed when neighbors were present. These data indicated that flooding, salinity, and competition all played a role in determining the zonation pattern of S. salsa. Furthermore, the importance of salinity was found to vary with life-history stage. Based on the results from these field manipulative experiments, we suggest that the marsh plant zonation paradigm may hold true for plant distributions along landscape-scale topographic gradients from mudflats to uplands in general. The relative importance of flooding, salinity, and competition, however, may vary at different elevations within a site and between sites. Handling editor: Pierluigi Viaroli  相似文献   

5.
Cartaxana  P.  Catarino  F. 《Plant Ecology》2002,159(1):95-102
Seasonalvariation in leaf nitrogen of mature green and senescent leaves and nitrogenresorption efficiency in three plants (Spartina maritima, Halimioneportulacoides and Arthrocnemum perenne) of aTagus estuary salt marsh are reported. Total nitrogen concentrations in greenand senescent leaves were higher during winter (December and March). Soilinorganic nitrogen availability showed an opposite pattern with higherconcentrations during summer (June and September) when total leaf biomass washigher. Nitrogen resorption efficiency ranged between 31 and 76% andH. portulacoides was the plant that better minimizednitrogen loss by this process. Nitrogen resorption occurred mainly from thesoluble protein pool, although other fractions must have been broken down duringthe resorption process. No significant seasonal variation in nitrogen resorptionefficiency and no relation to leaf total nitrogen or soil nitrogen availabilitywere found. This suggests that the efficiency of the resorption process is notdetermined by the plant nitrogen status nor by the availability of the nutrientin the soil. Nevertheless, resorption from senescing leaves may play animportant role in the nitrogen dynamics of salt marsh plants and reduce thenitrogen requirements for plant growth.  相似文献   

6.
Suding KN  LeJeune KD  Seastedt TR 《Oecologia》2004,141(3):526-535
Changes in competitive interactions under conditions of enhanced resource availability could explain the invasion success of some problematic plant species. For one invader of North American grasslands, Centaurea diffusa (diffuse knapweed), we test three hypotheses: (1) under ambient (high resource) conditions, C. diffusa is better able to tolerate competition from the resident community (competitive response), (2) under ambient conditions, C. diffusa strong impacts the competitive environment (competitive effect), and (3) reductions in nitrogen and/or phosphorus availability diminish these advantages. In support of our first hypothesis, C. diffusa was the most tolerant to neighbor competition of the four focal species under current resource conditions. In opposition to our second hypothesis, however, neighborhoods that contained C. diffusa and those where C. diffusa had been selectively removed did not differ in their impact on the performance of target transplant individuals or on resource conditions. Reduction in resource availability influenced competitive tolerance but not competitive impact, in partial support of our last hypothesis. Reduction in soil nitrogen (via sucrose carbon addition) enhanced the degree of neighbor competition experienced by all species but did not change their relative rankings; C. diffusa remained the best competitor under low nitrogen conditions. Reduction of soil phosphorus (via gypsum addition) weakened the ability of C. diffusa to tolerate neighbor competition proportionately more than the other focal species. Consequently, under low phosphorus conditions, C. diffusa lost its competitive advantage and tolerated neighbor competition similarly to the other focal species. We conclude that C. diffusa invasion may be double-edged: C. diffusa is less limited by nitrogen than the other focal species and is better able to utilize phosphorus to its competitive advantage.  相似文献   

7.
In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1–j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA–20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment‐associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation.  相似文献   

8.
The aerobic polyaromatic hydrocarbon (PAH) degrading microbial communities of two petroleum-impacted Spartina-dominated salt marshes in the New York/New Jersey Harbor were examined using a combination of microbiological, molecular and chemical techniques. Microbial isolation studies resulted in the identification of 48 aromatic hydrocarbon-degrading bacterial strains from both vegetated and non-vegetated marsh sediments. The majority of the isolates were from the genera Paenibacillus and Pseudomonas. Radiotracer studies using 14C-phenanthrene and 14C-pyrene were used to measure the PAH-mineralization activity in salt marsh sediments. The results suggested a trend towards increased PAH mineralization in vegetated sediments relative to non-vegetated sediments. This trend was supported by the enumeration of PAH-degrading bacteria in non-vegetated and vegetated sediment using a Most Probable Numbers (MPN) technique, which demonstrated that PAH-degrading bacteria existed in non-vegetated and vegetated sediments at levels ranging from 102 to 105 cells/g sediment respectively. No difference between microbial communities present in vegetated versus non-vegetated sediments was found using terminal restriction fragment length polymorphism (of the 16S rRNA gene) or phospholipid fatty acid analysis. These studies provide information on the specific members and activity of the PAH-degrading aerobic bacterial communities present in Spartina-dominated salt marshes in the New York/New Jersey Harbor estuary.  相似文献   

9.
Spartina alterniflora, a species vegetating on inter-tidal flats that was introduced from the eastern coast of United States, has become a hot topic, focusing on its invasion within local species in the coastal zone of China. Impacts of S. alterniflora on the inter-tidal macrobenthos community in the Jiangsu coastland are addressed by comparing the macrobenthos characteristics in a mudflat and in a four-year-old Spartina salt marsh that had earlier been a mudflat. During the period October 2002–July 2003, we studied the distribution pattern and diversity of macrobenthos, and discussed their correlation with environmental factors caused by Spartina vegetation. The results showed that a total of 43 macrobenthos species were found, mainly consisting of Mollusca, Crustacea, and Annelida. Ten macrobenthos species were found in the Spartina salt marsh, and 36 species were found in the mudflat. Life forms and functional groups of macrobenthos in the Spartina salt marsh were obviously distrinct from that of the mudflat. The study showed that macrobenthos diversity in the Spartina salt marsh decreased, and the community structure altered obviously, whereas the biomass showed no differences in different seasons. Statistical analysis demonstrated that seasonal change of macrobenthos diversity in the Spartina salt marsh negatively related to content of sediment organic matter, total N, bulk density, height and biomass of Spartina vegetation, and positively related to the density of Spartina. All these differences suggested the obvious effects of the Spartina vegetation on the Jiangsu inter-tidal benthic macroinvertebrate ecology. Furthermore, the investigation also showed that the niche of the native macrobenthos living in the mudflat has been transferred down, seaward, due to the invasion of Spartina in our study site.  相似文献   

10.
Nitrogen is often released in pulses with different frequencies, and N supply pulses may affect growth, reproduction, and biomass allocation of plants. However, few studies have examined how N supply pulses affect intraspecific competition of clonal plants and whether such an effect depends on the N supply amount. We grew one (no competition) or 12 ramets (with intraspecific competition) of both an invasive clonal plant Alternanthera philoxeroides and its native congener Alternanthera sessilis in five different N treatments: control (no N addition), low/high amount with low/high frequencies (pulses). Nitrogen addition significantly increased the growth of both species, while intraspecific competition decreased it. Nitrogen addition significantly increased intraspecific competitive intensity of A. philoxeroides as measured by the log response ratio of growth traits, but did not affect that of A. sessilis. Despite the N supply amount, N pulses had little effect on the growth and thus intraspecific competition of the two species. Therefore, increasing N deposition may change population structure and dynamics and the invasion succession of A. philoxeroides, but changes in N pulses may not.  相似文献   

11.
Cui B  He Q  Zhang K  Chen X 《Oecologia》2011,166(4):1067-1075
Vegetation zonation patterns in coastal marshes are hypothesized to be the result of both physical stress and competitive interactions. How these patterns may be driven by these factors at different life history stages remains poorly understood. We investigated the relative importance of species tolerance (response to physical stress) and competitive ability in determining the distributions of two dominant marsh species across a salt–fresh marsh interface in the Yellow River Estuary, China. There is a steep gradient in salinity across this interface and Suaeda salsa, an annual, dominates the saline side of the interface, while Phragmites australis, a perennial species, dominates the freshwater side. Using a series of field transplants, we examined the roles of physical stress and competition in mediating this zonation at different life history stages. Suaeda salsa performed well in its home zone, but seedling emergence, seedling survival, adult survival and adult growth were significantly suppressed by competition in the freshwater P. australis zone. Emergence, survival and growth of P. australis were inhibited in the saline S. salsa zone, regardless of neighbor treatments, but it performed well in its home zone. The magnitude of the competitive effect on the performance of S. salsa differed among the life history stages. Competition from P. australis had a much stronger effect on S. salsa seedling emergence and adult growth than on seedling survival and adult survival. Our results reveal that both physical stress and competition contributed to the observed zonation patterns in this marsh system. However, for S. salsa, the effect of competition varied with life-history stage. Insight into these ecological processes is critical to understanding how the zonation pattern in the marsh system is formed and maintained.  相似文献   

12.
The Yangtze River delta is characterized by rapidly accreting sediments that form tidal flats that are quickly colonized by emergent vegetation including Scirpus mariqueter and the invasive species Spartina alterniflora. We measured soil surface elevation, water table depth, soil salinity, water content and compaction in the tidal flat, the Scirpus and Spartina zones and their borders to identify relationships between environmental factors and colonization by Scirpus and Spartina. With increasing elevation from tidal flat to Spartina, inundation frequency and duration, moisture and depth to water table decreased whereas soil salinity, temperature and compaction increased. High soil moisture and groundwater and low salinity were the characteristics of the tidal flat and its border with Scirpus. The Spartina zone and its border with Scirpus were characterized by greater salinity and elevation relative to the other zones. Our findings suggest that soil salinity controls patterns of plant zonation in the newly formed tidal salt marshes whereas elevation is of secondary importance. Our results suggest that patterns of vegetation zonation in tidal marshes of the Yangtze River delta are controlled by environmental factors, especially (low) salinity that favors colonization by Scirpus in the lower elevations of the marsh.  相似文献   

13.
J. Pozo  R. Colino 《Hydrobiologia》1992,231(3):165-175
Decomposition dynamics of aerial parts and root-rhizomes of Spartina maritima in a Basque Country salt marsh was studied, using litter bags placed on the soil surface and buried 10 cm below ground. Aerial parts of the plant in aboveground position showed higher breakdown rates than samples placed belowground. There was no significant difference found between aerial parts and root-rhizomes buried. Nitrogen and phosphorus followed different dynamics (seasonal changes and progressive losses) that may be a consequence of distinctive mineralization pathways. The low faunal richness and densities belowground reflect the unfavourable life conditions in such a situation and, to a certain extent, the lower decomposition rates of buried litter. Four mathematical expressions that fit the data are presented and discussed.  相似文献   

14.
In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa × alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the ’unvegetated areas’. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.  相似文献   

15.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

16.
Salt-tolerant Agrostis stolonifera ecotypes commonly grow on upper salt marshes, environments regarded as having a limited nitrogen supply. The interaction between salinity and nitrate supply limitation was studied in two ecotypes of A. stolonifera, one isolated from an upper salt marsh and one from an inland habitat. The ion, amino acid, glycine betaine and sugar contents of the two ecotypes were determined over a range of external salt concentrations and levels of nitrate supply. In vivo nitrate reductase activity was also measured. Several low molecular weight nitrogenous compounds accumulated in the salt-stressed plants. Nitrogen supply limitation had a great effect on the way in which the plants responded to salt stress. In particular, the concentrations of the soluble organic nitrogenous compounds were reduced. The results are discussed with respect to the salt marsh environment, and possible models for cytoplasmic osmoregulation are presented.Acknowledgements: One of us (MJH) gratefully acknowledges the receipt of a research studentship from the Science Research Council, U.K. We would also like to thank Mrs E. E. Griffiths for skilled technical assistance, and Dr I. Ahmad for help with the amino acid analysis.  相似文献   

17.
李家兵  张秋婷  张丽烟  仝川 《生态学报》2016,36(12):3628-3638
2014年4月,选择闽江口鳝鱼滩湿地中未被入侵的短叶茳芏群落(A)、互花米草入侵斑块边缘(B)以及互花米草入侵斑块中央(C)为研究对象,基于时空互代研究方法,探讨了互花米草入侵序列下湿地土壤碳氮空间分布特征的差异。结果表明,互花米草入侵显著降低了土壤的NO_3~--N含量(P0.05),但整体增加了NH_4~+-N含量,这与其入侵后导致湿地土壤颗粒组成发生显著变化(砂砾含量增加33.81%),进而促进了土壤的矿化作用和硝化作用,并有助于硝态氮的垂直淋失有关。互花米草入侵整体增加了土壤的碳氮含量和C/N比,与入侵进程和入侵前相比,互花米草入侵后湿地土壤的碳储量分别增加了8.73%和24.37%,氮储量则分别增加了10.22%和17.87%,这主要与其对闽江口湿地植物群落格局、养分生物循环以及强促淤作用引起的土壤颗粒组成等显著改变有关。研究发现,闽江口互花米草入侵对短叶茳芏湿地土壤碳氮含量的影响相对于江苏盐城、长江口以及杭州湾湿地的影响可能更为显著,其互花米草入侵较大改变了土壤中陆源和海源有机质的来源比例,使得入侵后湿地土壤养分的自源性增强。  相似文献   

18.
胡文杰  梁秋菊  和昱含  孙见凡 《广西植物》2020,40(11):1531-1539
为探究全球氮沉降影响外来植物入侵扩张的作用机制,该文通过受控模拟试验,以入侵植物加拿大一枝黄花(Solidago canadensis)为对象,研究了三种氮水平(N0、N5和N12)下五种不同入侵程度(种内及种间竞争)的加拿大一枝黄花凋落叶浸提液对本地植物莴苣(Lactuca sativa)种子萌发和幼苗生长化感作用的影响。结果表明:(1)N0、N5和N12处理下的不同入侵程度加拿大一枝黄花凋落叶浸提液均显著抑制莴苣的萌发和生长,其中N5土壤入侵初期(S1A3)处理浸提液的化感作用最显著,其发芽速度指数、发芽活力指数、根长、株高和叶长比对照分别降低了61%、79%、84%、68%和13%,此时凋落叶中的总酚和总黄酮含量最高,分别为0.48 mg·g-1和1.50 mg·g-1。(2)相同氮添加下,入侵程度对加拿大一枝黄花化感作用有显著影响,随着入侵程度的增加,加拿大一枝黄花化感作用显著减弱,入侵初期(S1A3)凋落叶化感作用显著高于入侵后期(S3A1)。(3)相同入侵程度下,氮添加对加拿大一枝黄花化感作用有显著影响,N5处理的加拿大一枝黄花化感作用比N0或N12处理显著增加。(4)氮添加与入侵程度有交互作用,两者共同作用显著影响了莴苣种子的综合化感作用。综上结果表明,氮沉降可能会增强入侵初期加拿大一枝黄花凋落叶对本地植物的化感抑制作用,进一步促进外来植物的成功入侵,为进一步研究加拿大一枝黄花的化感作用及生态防治提供了一定的理论参考。  相似文献   

19.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

20.
Greenhouse experiments were conducted to evaluate the impact of red mud, the residue of the Bayer process for extracting alumina from bauxite, on wetland to investigate whether red mud can be used for wetland restoration. Two wetland species,Spartina alterniflora Loisel. andSagittaria lancifolia L., were used to test their response to the following substrate treatments: 100% marsh sediment, 100% red mud, a mixture of 50% marsh sediment and 50% red mud, a mixture of 50% red mud and 50% compost, and neutralized red mud. Each substrate treatment received two fertilization levels, fertilized (N–P–K) and unfertilized. Red mud could support the growth of the salt marsh species,Spartina alterniflora, but not the fresh marsh species.Sagittaria lancifolia. The high Na content and salinity of red mud, even when mixed with marsh sediment or compost, appeared to be the primary cause for the high mortality ofSagittaria in these substrates. Fertilization did not reduce the stress response ofSagittaria to red mud, but significantly increased the growth ofSpartina. Red mud is low in available N and P and required fertilizer or organic matter (e.g., compost) addition to increase fertility. In experiments with both fresh and salt marsh sediments, the concentrations of soluble heavy metals, with the exception of Mn, were not significantly greater for red mud than for marsh sediment. Thus, the release of heavy metals from red mud over the short-term may not pose an environmental concern. However, the mobilization of heavy metals over the long-term and the influence of plants in accumulating metals requires further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号