首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac disease is a common secondary complication appearing in chronic diabetics. Isolated perfused working hearts obtained from both acute and chronic diabetic rats have also been shown to exhibit cardiac functional abnormalities when exposed to high work loads. We studied cardiac performance at various time points after induction of diabetes in rats to determine exactly when functional alterations appeared and whether these alterations progressed with the disease state. Female Wistar rats were made diabetic by a single i.v. injection of either alloxan (65 mg/kg) or streptozotocin (STZ 60 mg/kg). Cardiac performance was assessed at 7, 30, 100, 180, 240, and 360 days after induction of diabetes using the isolated perfused working heart technique. No changes were observed in the positive and negative dP/dt development at various atrial filling pressures in the diabetic hearts 7 days after treatment. Alloxan diabetic rat hearts exhibited depressed left ventricular pressure and positive and negative dP/dt development when perfused at high atrial filling pressures, at 30, 100, and 240 days after treatment. STZ diabetic rat hearts exhibited depressed cardiac performance at high atrial filling pressures, at 100, 180, and 360 days after treatment, but not at 30 days after treatment. Control hearts exhibited slight but significant depressions in cardiac function with age. These results suggest that cardiac functional alterations appear in diabetic rats about 30 days after induction and progress with the disease. These alterations may indicate the development of a cardiomyopathy.  相似文献   

2.
Diabetes is known to result in depression of myocardial function, whereas hearts from insulin-treated diabetic rats exhibit functional characteristics similar to controls. In the present study, we have studied the effect of insulin perfusion on cardiac performance of 3-day and 6-week streptozotocin (STZ) diabetic rats. Three days of diabetes did not result in depressed cardiac performance when the hearts were isolated and perfused in the working heart mode. Increasing the concentration of glucose from 5 to 10 mM in the perfusion fluid did not alter the function in either control or in diabetic rat hearts. However, when regular insulin or glucagon-free insulin (Humulin) (5 mU/mL) was included in the perfusion medium, the ventricular function of hearts from control rats was significantly enhanced, while diabetic myocardial function remained unaffected. When the study was repeated on hearts from 6-week diabetic animals, cardiac function of diabetic rats was significantly depressed as compared with controls. As in the 3-day study, contractility was not affected in either group by increasing glucose concentration in the perfusion medium. Again, inclusion of insulin in the medium enhanced cardiac contractility only in control hearts. These results suggest that diabetes results in a loss of myocardial sensitivity to insulin which seems to occur as early as 3 days after induction of diabetes with STZ. The study also demonstrates that the beneficial effects of in vivo insulin treatment on myocardial alterations induced by diabetes are not due to its direct myocardial effects.  相似文献   

3.
To determine the vasodilative and negative inotropic effects of adenosine in hearts of diabetic rats, isolated hearts, perfused at constant perfusion pressure (Langendorff technique), were prepared from age-matched control Wistar rats and rats made diabetic 10 weeks prior to study by a single injection of streptozotocin (65 mg.kg-1, i.p.). Adenosine and nitroprusside each increased coronary inflow when administered either as bolus injections or as infusions. Coronary flow responses to nitroprusside were unchanged in diabetic hearts. Coronary flow responses of diabetic hearts to adenosine injections were unchanged, but responses to adenosine infusions tended to be larger than in normal hearts. Diabetes had no significant effect on the EC50 for either vasodilator. Adenosine inhibited the inotropic effect of isoproterenol (enhanced left ventricular (LV) pressure (P) and LV dP/dtmax) in normal hearts, independently of its vasodilative action. This negative inotropic action of adenosine appeared equally strong in diabetic hearts. We conclude that adenosine's coronary vasodilative and anti-beta-adrenergic, negative inotropic effects in the rat heart were not diminished after 10 weeks of streptozotocin-induced diabetes mellitus. Thus, earlier reports of diminished adenosine dilative efficacy in experimental diabetes may have been unique to those particular models.  相似文献   

4.
C I Smith  G N Pierce  N S Dhalla 《Life sciences》1984,34(13):1223-1230
The effect of chronic experimental diabetes on the adenylate cyclase system (AC) in the rat heart was investigated. Rats were made diabetic by an intravenous injection of streptozotocin (65 mg/kg), hearts were removed 8 weeks later and washed cell particles were isolated. AC activity was measured in the absence and presence of different concentrations of forskolin, NaF, GTP analogue [Gpp(NH)p] or epinephrine. A significant depression in the epinephrine stimulated AC activity was observed in diabetic hearts. Basal AC activity and stimulation of AC with forskolin, NaF and Gpp(NH)p were not significantly different between control and diabetic preparations. These results indicate no apparent alterations in the regulatory or catalytic properties of AC in hearts from chronic diabetic rats. The observed depression in epinephrine stimulated AC activity may account for the depressed inotropic action of catecholamines in the diabetic cardiomyopathy.  相似文献   

5.
To examine the mechanisms of changes in beta-adrenergic signal transduction in heart failing due to volume overload, we studied the status of beta-adrenoceptors (beta-ARs), G protein-coupled receptor kinase (GRK), and beta-arrestin in heart failure due to aortocaval shunt (AVS). Heart failure in rats was induced by creating AVS for 16 wk, and beta-AR binding, GRK activity, as well as their protein content, and mRNA levels were determined in both left and right ventricles. The density and protein content for beta1-ARs, unlike those for beta2-ARs, were increased in the failing hearts. Furthermore, protein contents for GRK isoforms and beta-arrestin-1 were decreased in membranous fractions and increased in cytosolic fractions from the failing hearts. On the other hand, steady-state mRNA levels for beta1-ARs and GRK2, as well as protein content for Gbetagamma-subunits, did not change in the failing heart. Basal cardiac function was depressed; however, both in vivo and ex vivo positive inotropic responses of the failing hearts to isoproterenol were augmented. Treatment of AVS animals with imidapril (1 mg.kg(-1).day(-1)) or losartan (20 mg.kg(-1).day(-1)) retarded the progression of heart failure; partially prevented changes in beta1-ARs, GRKs, and beta-arrestin-1 in the failing myocardium; and attenuated the increase in positive inotropic effect of isoproterenol. These results indicate that upregulation of beta1-ARs is associated with subcellular redistribution of GRKs and beta-arrestin-1 in the failing heart due to volume overload. Furthermore, attenuation of alterations in beta-adrenergic system by imidapril or losartan may be due to blockade of the renin-angiotensin system in the AVS model of heart failure.  相似文献   

6.
The effect of experimental diabetes on the sensitivity of isolated left atrial strips to inotropic agents was investigated in rabbits made diabetic with alloxan. After 4 weeks of diabetes no change in sensitivity was detected in response to isoproterenol or ouabain. In contrast, 15 weeks of diabetes induced a decreased sensitivity to beta-adrenergic stimulation, exhibited as a shift to the right in concentration-response curves obtained in response to isoproterenol and noradrenaline. In addition, after 15 weeks of diabetes the inotropic response to ouabain was depressed, and a small decrease in sensitivity was detected in response to forskolin. In contrast, no significant changes in the concentration-response curves obtained from alpha-adrenergic stimulation by phenylephrine or calcium chloride were detected. Unlike the streptozotocin diabetic rat, which exhibits low serum thyroid hormone levels, no changes in serum thyroid hormones were detected in the alloxan diabetic rabbit. It is suggested that the increased inotropic sensitivity to alpha-adrenergic agonists observed in the diabetic rat, but not in the rabbit, may be due to low serum thyroid hormone levels. In contrast, the deleterious effects of diabetes on beta-adrenergic and ouabain sensitivity occur independently of changes in serum thyroid hormones.  相似文献   

7.
In order to examine the status of Ca2+ channels in heart sarcolemma during the development of diabetes, rats were injected intravenously with 65 mg/kg streptozotocin and hearts were removed 1, 3 and 8 weeks later. Crude membranes from the ventricular muscle were prepared and the specific binding of 3H-nitrendipine was studied by employing different concentrations of this Ca 2+-antagonist. A significant decrease in both dissociation constant and maximal number of 3H-nitrendipine binding was observed in 3 and 8 weeks diabetic preparations. No such alterations were evident in diabetic brain membranes. Treatment of diabetic animals with insulin prevented the occurrence of these changes in the myocardium. The altered 3H-nitrendipine binding characteristics in diabetic heart membranes may not be due to the high levels of circulating catecholamines in this experimental model because no such changes were seen upon injecting a high dose (40 mg/kg) of isoproterenol in rats for 24 hr. The reduced number of 3H-nitrendipine binding sites may decrease Ca2+-influx through voltage sensitive Ca2+ channels and partly explain the depressed cardiac contractile force development in chronic diabetes whereas the increased affinity of Ca2+ channels may partly explain the increased sensitivity of diabetic heart to Ca 2+.  相似文献   

8.
We have previously shown that chronic treatment with propranolol had beneficial effects on heart function in rats during increasing-age in a gender-dependent manner. Herein, we hypothesize that propranolol would improve cardiac function in diabetic cardiomyopathy and investigated the benefits of chronic oral administration of propranolol on the parameters of Ca2+ signaling in the heart of streptozotocin-diabetic rats. Male diabetic rats received propranolol (25 mg/kg, daily) for 12 weeks, 1 week after diabetes induction. Treatment of the diabetic rats with propranolol did not produce a hypoglycaemic effect whereas it attenuated the increased cell size. Basal and β-agonist response levels of left ventricular developed pressure were significantly higher in propranolol-treated diabetic rats relative to untreated diabetics while left ventricular end diastolic pressure of the treated diabetics was comparable to the controls. Propranolol treatment normalized also the prolongation of the action potential in papillary muscles from the diabetic rat hearts. This treatment attenuated the parameters of Ca2+ transients, depressed Ca2+ loading of the sarcoplasmic reticulum, and of the basal intracellular Ca2+ level of diabetic cardiomyocytes. Furthermore, Western blot data indicated that the diabetes-induced alterations in the cardiac ryanodine receptor Ca2+ release channel’s hyperphosphorylation decreased the FKBP12.6 protein level. Also, the high phosphorylated levels of PKA and CaMKII were prevented with propranolol treatment. Chronic treatment with propranolol seems to prevent diabetes-related changes in heart function by controlling intracellular Ca2+ signaling and preventing the development of left ventricular remodeling in diabetic cardiomyopathy.  相似文献   

9.
Diabetes results in myocardial functional alterations which are accompanied by a depression of biochemical parameters such as myosin ATPase and calcium uptake in the sarcoplasmic reticulum. Methyl palmoxirate, a fatty acid analog, is reported to decrease circulating glucose levels by inhibiting fatty acid metabolism, thus forcing carbohydrate utilization. In the present study, we attempted to prevent streptozotocin diabetes-induced myocardial alterations in the rat. Using the isolated working heart preparation, we observed a depression of myocardial function in rats 6 weeks after the induction of diabetes, which was characterized by the inability of these hearts to develop left ventricular pressures and rates of ventricular contraction and relaxation as well as control hearts at higher left atrial filling pressures. Methyl palmoxirate treatment (25 mg kg-1 day-1 po daily) was unable to control diabetes-induced changes in plasma glucose, triglycerides, insulin, and total lipids. Also, the functional depression seen in diabetic rat hearts was present despite the treatment. However, depression of calcium uptake and elevation of long chain acyl carnitines seen in sarcoplasmic reticulum (SR) prepared from diabetic rat hearts could be prevented by the treatment. As triiodothyronine (T3) treatment has been shown to normalize depression of cardiac myosin ATPase in diabetic rats, we repeated the study using a combination of T3 (30 micrograms kg-1 day-1 sc daily) and methyl palmoxirate. While diabetic rats treated with T3 alone did not show significant improvement of myocardial function when compared with untreated diabetics, the function of those treated with both T3 and methyl palmoxirate was not significantly different from that in control rat hearts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To examine the role of changes in myocardial metabolism in cardiac dysfunction in diabetes mellitus, rats were injected with streptozotocin (65 mg/kg body wt) to induce diabetes and were treated 2 wk later with the carnitine palmitoyltransferase inhibitor (carnitine palmitoyltransferase I) etomoxir (8 mg/kg body wt) for 4 wk. Untreated diabetic rats exhibited a reduction in heart rate, left ventricular systolic pressure, and positive and negative rate of pressure development and an increase in end-diastolic pressure. The sarcolemmal Na+-K+-ATPase activity was depressed and was associated with a decrease in maximal density of binding sites (Bmax) value for high-affinity sites for [3H]ouabain, whereas Bmax for low-affinity sites was unaffected. Treatment of diabetic animals with etomoxir partially reversed the depressed cardiac function with the exception of heart rate. The high serum triglyceride and free fatty acid levels were reduced, whereas the levels of glucose, insulin, and 3,3',-5-triiodo-L-thyronine were not affected by etomoxir in diabetic animals. The activity of Na+-K+-ATPase expressed per gram heart weight, but not per milligram sarcolemmal protein, was increased by etomoxir in diabetic animals. Furthermore, Bmax (per g heart wt) for both low-affinity and high-affinity binding sites in control and diabetic animals was increased by etomoxir treatment. Etomoxir treatment also increased the depressed left ventricular weight of diabetic rats and appeared to increase the density of the sarcolemma and transverse tubular system to normalize Na+-K+-ATPase activity. Therefore, a shift in myocardial substrate utilization may represent an important signal for improving the depressed cardiac function and Na+-K+-ATPase activity in diabetic rat hearts with impaired glucose utilization.  相似文献   

11.
L-Carnitine is necessary for the transfer of long-chain fatty acids into the mitochondrial matrix where energy production occurs. In the absence of L-carnitine, the accumulation of free fatty acids and related intermediates could produce myocardial subcellular alterations and cardiac dysfunction. Diabetic hearts have a deficiency in the total carnitine pool and develop cardiac dysfunction. This suggested that carnitine therapy may ameliorate alteration in cardiac contractile performance seen during diabetes. In this study, heart function was studied in streptozotocin diabetic rats given L-carnitine orally. Oral L-carnitine treatment (50-250 mg.kg-1.day-1) of 1- and 3-week diabetic rats increased plasma free and total carnitine and decreased plasma acyl carnitine levels. In both groups, myocardial total carnitine levels were increased. However, L-carnitine (200 mg.kg-1.day-1) treatment of diabetic rats for 6 weeks had no effect on plasma carnitine levels. Similarly, plasma lipids remained elevated whereas cardiac function was still depressed. These studies suggest that in the chronically diabetic rat, the route of administration of L-carnitine is an important factor in determining an effect.  相似文献   

12.
Isolated perfused hearts from diabetic rats exhibit a decreased responsiveness to increasing work loads. However, the precise time point at which functional alterations occur is not clearly established. Previous observations in our laboratory have suggested that the alterations in myocardial function are not apparent at 30 days whereas they are clearly seen 100 days after streptozotocin-induced diabetes. We studied the cardiac function of 6-week diabetic rats using the isolated perfused heart preparation. The 6-week time period was found to be sufficient to cause depression of myocardial function in these animals. We also studied the effect of insulin treatment on myocardial performance of diabetic rats. Insulin treatment was initiated 3 days and 6 weeks after injection of streptozotocin (STZ). The treatment was continued for 6 and 4 weeks in the respective groups. Hearts from 6-week diabetic animals exhibited a depressed left ventricular developed pressure (LVDP) and positive and negative dP/dt at higher filling pressures when compared with 6-week control animals. However, the depression was not seen in the 6-week insulin-treated diabetic animals. Ten-week diabetic rat hearts also showed a depression of LVDP and positive and negative dP/dt when compared with 10-week controls. The group of animals that had been diabetic for 6 weeks and then treated for 4 weeks with insulin exhibited a reversal of the depressed myocardial function. These results demonstrate that depression of myocardial performance, which is evident 6 weeks after diabetes is induced, can be prevented if insulin treatment is initiated as the disease is induced. Further, insulin treatment is capable of reversing the abnormalities after they have occurred.  相似文献   

13.
The present study was designed to determine whether there are beneficial effects of intake of Ω-3E (containing 70% pure omega-3 and 2% natural vitamin E) in cardiac dysfunction of diabetic rats. We also examined whether there are gender-related differences in the responses to the intake of Ω-3E on the heart dysfunction. Experiments were performed by using Langendorff-perfused hearts from normal, diabetic (with 50 mg/kg streptozotocin), and Ω-3E (50 mg/kg body weight/day) treated diabetic 3-month-old Wistar rats. Ω-3E treatment of the diabetics caused small, but significant decrease (13% and 14% female versus male) in the blood glucose level. Ω-3E treatment of the diabetic female rats did not prevent diabetes-induced decrease in left ventricular developed pressure (LVDP) and increase in left ventricular end-diastolic pressure (LVEDP) with respect to the control female rats. On the other hand, the treatment of diabetic male rats caused significant recovery in depressed LVDP. Furthermore, such treatment of diabetic female and male rats caused significant recovery in depressed rates of changes of developed pressure. This effect was more significant in males. Besides, Ω-3E caused significant further lengthening in the diabetes-induced increased time to the peak of the developed pressure in females, while it normalized the lengthening in the relaxation of the developed pressure in diabetic males. In addition, Ω-3E treatment caused significant restorations in the diabetes-induced altered activities of antioxidant enzymes without any significant gender discrepancy. Present data show that there are gender related differences in diabetic heart dysfunction and the response to antioxidant treatment.  相似文献   

14.
In this study we investigated functional changes in the femoral artery and ultrastructural alterations in mesenteric vessels and capillaries in the rat model of multiple low dose streptozotocin (STZ)-induced diabetes. Participation of oxidative stress in this model of diabetes was established by studying the effect of the pyridoindole antioxidant stobadine (STB) on diabetes-induced impairment. Experimental diabetes was induced by i.v. bolus of STZ (20 mg/kg) given for three consecutive days to male rats. At the 12(th) week following STZ administration, the animals revealed typical signs of diabetes, such as polyphagia, polydypsia and polyuria. There was no weight gain in the diabetic groups throughout the experiment. No exitus occurred in any group. Diabetes was characterised with high levels of plasma glucose, no significant changes in lipid metabolism, decreased serum levels of glutathione, increased serum levels of the lysosomal enzyme N-acetyl-beta-D-glucosaminidase (NAGA), injured endothelial relaxant capacity of the femoral artery and alterations in ultrastructure of mesenteric arteries and capillaries. Antioxidant STB in the dose of 25 mg/kg body weight i.p. (5 times per week) did not influence glucose levels, however, it mitigated biochemical, functional and ultrastructural changes induced by diabetes, suggesting a role of reactive oxygen species in diabetes-induced tissue damage.  相似文献   

15.
Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20-22 day gestation) or adult (3-4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.  相似文献   

16.
Studies were carried out to study the effect of endocrine changes on rat cardiac performance, biochemistry, and responses to drugs. Hyperthyroidism increased contractility in rat hearts and enhanced the phosphorylase response to catecholamine. The inotropic response may be due to an increase in cardiac mass while the enzyme changes may be due to several factors. Hypothyroidism decreased force of contraction, enhanced alpha-adrenergic inotropic and chronotropic responses, and decreased beta-adrenergic responses in isolated atrial preparations. An interaction between cyclic AMP and cyclic GMP is suggested as a possible explanation. Diabetes induced by alloxan or streptozotocin produced a decrease in cardiac performance after 42 days which was correlated with a decrease in sarcoplasmic reticulum (SR) Ca2+ uptake. Insulin treatment reversed or prevented both SR and functional changes; other treatments were not as successful. Responses to cardiotonic drugs were altered by the diabetic state. The phosphorylase response to isoproterenol was enhanced while the inotropic response was not affected. An initial subsensitivity to carbachol at 30-100 days of diabetes subsequently converted to a supersensitivity to the muscarinic agent. Ouabain responses were decreased in atrial and papillary preparations from diabetic animals. Studies are continuing to elucidate the mechanisms involved in the altered pharmacological responses seen in hearts from diabetic animals.  相似文献   

17.
We have assessed the presence of VIP/PHI/secretin receptors in heart by: (1) testing the ability of the corresponding peptides to activate adenylate cyclase in cardiac membranes from rat, dog, Cynomolgus monkey and man, and (2) examining the ability of the same peptides to exert inotropic and chronotropic effects on heart preparations from rat and Cynomolgus monkey in vitro. Based on their affinity for natural peptides and synthetic analogs, two types of VIP/PHI/secretin receptors were characterized: the relatively nonspecific "secretin/VIP receptor" of rat heart (that is "secretin-preferring" only in that secretin was more efficient than VIP in stimulating adenylate cyclase), and the "VIP/PHI-preferring" receptor of man, monkey and dog heart. Four physiopathological situations affecting secretin/VIP receptors in rat heart were explored: In male rats from the Okamoto strain and the Lyon strain, two strains presenting spontaneous hypertension, heart membranes exhibited a markedly decreased response of adenylate cyclase to secretin/VIP, with lesser alterations in the responses to isoproterenol and glucagon. This impairment developed in parallel with the occurrence of hypertension and was reproduced in normotensive rats submitted to chronic isoproterenol treatment (but not in Goldblatt hypertensive rats). These findings are consistent with a hyperactivity of norepinephrine pathways in spontaneously hypertensive rats, leading to a reduced number of cardiac post-junctional secretin/VIP receptors bound to adenylate cyclase. Heart membranes from genetically obese (fa/fa) Zucker rats also exhibited severely decreased responses to secretin/VIP with lesser alterations in the responses to glucagon and isoproterenol. These anomalies were specific for the heart, and developed in concomitance with obesity. The first anomaly could not be corrected by severe food restriction. Secretin stimulation of heart adenylate cyclase was also selectively altered in streptozotocin-diabetic rats. Thus, two types of diabetic cardiomyopathy were characterized by a severe local alteration of secretin/VIP receptors coupled to adenylate cyclase. Hypothyroidism, provoked in rat by thyroidectomy or propylthiouracil treatment, again induced a marked decrease in secretin-stimulated cardiac adenylate cyclase activity. In rat papillary muscle electrically stimulated in vitro, secretin exerted a positive inotropic effect. This effect was reduced in obese (fa/fa) Zucker rats. In rat right atrium, secretin also exerted a positive chronotropic effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Since selenium compounds can restore some metabolic parameters and structural alterations of diabetic rat heart, we were tempted to investigate whether these beneficial effects extend to the diabetic rat cardiac dysfunctions. Diabetes was induced by streptozotocin (50mg/kg body weight) and rats were then treated with sodium selenite (5 micromol/kg body weight/day) for four weeks. Electrically stimulated isometric contraction and intracellular action potential in isolated papillary muscle strips and transient (I(to)) and steady state (I(ss)) outward K(+) currents in isolated cardiomyocytes were recorded. Sodium selenite treatment could reverse the prolongation in both action potential duration and twitch duration of the diabetic rats, and also cause significant increases in the diminished amplitudes of the two K(+) currents. Treatment of rats with sodium selenite also markedly increased the depressed acid-soluble sulfhydryl levels of the hearts. Our data suggest that the beneficial effects of sodium selenite treatment on the mechanical and electrical activities of the diabetic rat heart appear to be due to the restoration of the diminished K(+) currents, partially, related to the restoration of the cell glutathione redox cycle.  相似文献   

19.
There is evidence that one or more metabolites of arachidonic acid can produce positive inotropic effects and may also be implicated in the enhanced alpha 1-adrenoceptor responses in hearts from diabetic rats. We therefore carried out a study to investigate the possibility that arachidonic acid metabolites could be involved in the altered cardiac alpha 1-effect of norepinephrine (in the presence of propranolol) in chronic streptozotocin-diabetic rats. Our results have shown that in the presence of the cyclooxygenase inhibitor indomethacin or the thromboxane synthetase inhibitor imidazole, the norepinephrine-stimulated positive inotropic effect and the formation of inositol 1,4,5-trisphosphate were significantly increased in control hearts but were unaltered in hearts from diabetic rats. The addition of the prostacyclin synthetase inhibitor tranylcypromine reduced the norepinephrine-stimulated positive inotropic effect and inositol 1,4,5-trisphosphate formation only in diabetic hearts and had no effect in the controls. The nature and physiological significance of the enhanced positive inotropic effect and inositol 1,4,5-trisphosphate formation in the control heart with the addition of indomethacin and imidazole are still unclear. The effect of tranylcypromine may indicate the participation of prostacyclin in mediating the enhanced alpha 1-inotropic effect of norepinephrine in the chronic diabetic heart.  相似文献   

20.
研究异丙肾上腺对心内神经节中肽能神经递质 SS的影响 ,本文在大鼠皮下注射异丙肾上腺素 5 m g/ kg,连续三天 ,固定后取心房后壁 ,用免疫组织化学结合图像分析方法观察大鼠心内神经节中肽能递质 SS的变化。对照组大鼠心内神经节中含有 SS免疫反应 (SS- IR)阳性神经纤维和细胞 ;实验组大鼠心内神经节中 SS- IR阳性神经纤维和神经元的积分光密度均明显减低。结果说明异丙肾上腺素可降低心内神经节中 SS含量 ,提示 ,异丙肾上腺素的正性变时和变力作用可能通过降低 SS的含量来实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号