首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
High-altitude exposure changes the distribution of body water and electrolytes. Arginine vasopressin (AVP) may influence these alterations. The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing altitude exposures. Seven healthy males (age 22 +/- 1 yr, height 176 +/- 2 cm, mass 75.3 +/- 1.8 kg) completed three WDTs: at sea level (SL), after acute altitude exposure (2 days) to 4,300 m (AA), and after prolonged altitude exposure (20 days) to 4,300 m (PA). Body mass, standing and supine blood pressures, plasma osmolality (Posm), and plasma AVP (PAVP) were measured at 0, 12, 16, and 24 h of each WDT. Urine volume was measured at each void throughout testing. Baseline Posm increased from SL to altitude (SL 291.7 +/- 0.8 mosmol/kgH2O, AA 299.6 +/- 2.2 mosmol/kgH2O, PA 302.3 +/- 1.5 mosmol/kgH2O, P < 0.05); however, baseline PAVP measurements were similar. Despite similar Posm values, the maximal PAVP response during the WDT (at 16 h) was greater at altitude than at SL (SL 1.7 +/- 0.5 pg/ml, AA 6.4 +/- 0.7 pg/ml, PA 8.7 +/- 0.9 pg/ml, P < 0.05). In conclusion, hypoxia appeared to alter AVP regulation by raising the osmotic threshold and increasing AVP responsiveness above that threshold.  相似文献   

2.
To test the hypothesis that estrogen reduces the operating point for osmoregulation of arginine vasopressin (AVP), thirst, and body water balance, we studied nine women (25 +/- 1 yr) during 150 min of dehydrating exercise followed by 180 min of ad libitum rehydration. Subjects were tested six different times, during the early-follicular (twice) and midluteal (twice) menstrual phases and after 4 wk of combined [estradiol-norethindrone (progestin), OC E + P] and 4 wk of norethindrone (progestin only, OC P) oral contraceptive administration, in a randomized crossover design. Basal plasma osmolality (P(osm)) was lower in the luteal phase (281 +/- 1 mosmol/kgH(2)O, combined means, P < 0.05), OC E + P (281 +/- 1 mosmol/kgH(2)O, P < 0.05), and OC P (282 +/- 1 mosmol/kgH(2)O, P < 0. 05) than in the follicular phase (286 +/- 1 mosmol/kgH(2)O, combined means). High plasma estradiol concentration lowered the P(osm) threshold for AVP release during the luteal phase and during OC E + P [x-intercepts, 282 +/- 2, 278 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O, for follicular, luteal (combined means), OC E + P, and OC P, respectively; P < 0.05, luteal phase and OC E + P vs. follicular phase] during exercise dehydration, and 17beta-estradiol administration lowered the P(osm) threshold for thirst stimulation [x-intercepts, 280 +/- 2, 279 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O for follicular, luteal, OC E + P, and OC P, respectively; P < 0.05, OC E + P vs. follicular phase], without affecting body fluid balance. When plasma 17beta-estradiol concentration was high, P(osm) was low throughout rest, exercise, and rehydration, but plasma arginine vasopressin concentration, thirst, and body fluid retention were unchanged, indicating a lowering of the osmotic operating point for body fluid regulation.  相似文献   

3.
Body fluid homeostasis was investigated during chronic bed rest (BR) and compared with that of acute supine conditions. The hypothesis was tested that 6 degrees head-down BR leads to hypovolemia, which activates antinatriuretic mechanisms so that the renal responses to standardized saline loading are attenuated. Isotonic (20 ml/kg body wt) and hypertonic (2.5%, 7.2 ml/kg body wt) infusions were performed in eight subjects over 20 min following 7 and 10 days, respectively, of BR during constant sodium intake (200 meq/day). BR decreased body weight (83.0 +/- 4.8 to 81.8 +/- 4.4 kg) and increased plasma osmolality (285.9 +/- 0.6 to 288.5 +/- 0.9 mosmol/kgH(2)O, P < 0.05). Plasma ANG II doubled (4.2 +/- 1.2 to 8.8 +/- 1.8 pg/ml), whereas other endocrine variables decreased: plasma atrial natriuretic peptide (42 +/- 3 to 24 +/- 3 pg/ml), urinary urodilatin excretion rate (4.5 +/- 0.3 to 3.2 +/- 0.1 pg/min), and plasma vasopressin (1.7 +/- 0.3 to 0.8 +/- 0.2 pg/ml, P < 0.05). During BR, the natriuretic response to the isotonic saline infusion was augmented (39 +/- 8 vs. 18 +/- 6 meq sodium/350 min), whereas the response to hypertonic saline was unaltered (32 +/- 8 vs. 29 +/- 5 meq/350 min, P < 0.05). In conclusion, BR elicits antinatriuretic endocrine signals, but it does not attenuate the renal natriuretic response to saline stimuli in men; on the contrary, the response to isotonic saline is augmented.  相似文献   

4.
To determine estrogen effects on osmotic regulation of arginine vasopressin (AVP) and body fluids, we suppressed endogenous estrogen and progesterone using the gonadotropin-releasing hormone (GnRH) analog leuprolide acetate (GnRHa). Subjects were assigned to one of two groups: 1) GnRHa alone, then GnRHa + estrogen (E, n = 9, 25 +/- 1 yr); 2) GnRHa alone, then GnRHa + estrogen with progesterone (E/P, n = 6, 26 +/- 3). During GnRHa alone and with hormone treatment, we compared AVP and body fluid regulatory responses to 3% NaCl infusion (HSI, 120 min, 0.1 ml. min(-1). kg body wt(-1)), drinking (30 min, 15 ml/kg body wt), and recovery (60 min of seated rest). Plasma [E(2)] increased from 23.9 to 275.3 pg/ml with hormone treatments. Plasma [P(4)] increased from 0.6 to 5.7 ng/ml during E/P and was unchanged (0.4 to 0.6 ng/ml) during E. Compared with GnRHa alone, E reduced osmotic AVP release threshold (275 +/- 4 to 271 +/- 4 mosmol/kg, P < 0.05), and E/P reduced the AVP increase in response during HSI (6.0 +/- 1.3 to 4.2 +/- 0.6 pg/ml at the end of HSI), but free water clearance was unaffected in either group. Relative to GnRHa, pre-HSI plasma renin activity (PRA) was greater during E (0.8 +/- 0.1 vs. 1.2 +/- 0.2 ng ANG I. ml(-1). h(-1)) but not after HSI or recovery. PRA was greater than GnRHa during E/P at baseline (1.1 +/- 0.2 vs. 2.5 +/- 0.6) and after HSI (0.6 +/- 0.1 vs. 1.1 +/- 1.1) and recovery (0.5 +/- 0.1 vs. 1.3 +/- 0.2 ng ANG I. ml(-1). h(-1)). Baseline fractional excretion of sodium was unaffected by E or E/P but was attenuated by the end of recovery for both E (3.3 +/- 0.6 vs. 2.4 +/- 0.4%) and E/P (2.8 +/- 0.4 vs 1.7 +/- 0.4%, GnRHa alone and with hormone treatment, respectively). Fluid retention increased with both hormone treatments. Renal sensitivity to AVP may be lower during E due to intrarenal effects on water and sodium excretion. E/P increased sodium retention and renin-angiotensin-aldosterone stimulation.  相似文献   

5.
Renal resistance to vasopressin has been demonstrated in type 1 diabetes and in type 2 diabetes with nephropathy. However, renal response to vasopressin in type 2 diabetes without nephropathy has not been studied. We studied 10 subjects with poorly controlled type 2 diabetes (PCDS; Hb A(1c) >9%), 10 subjects with well-controlled type 2 diabetes (WCDS; Hb A(1c) <7%), and 10 matched nondiabetic control subjects (NDCS) during a euglycemic 8-h water deprivation test. None of the subjects had nephropathy. Water deprivation caused similar rises in plasma vasopressin concentrations in all three groups, but the rise in urine osmolality in PCDS (280.3 +/- 49.7 to 594.4 +/- 88.5 mosmol/kgH(2)O) was lower than in WCDS (360.7 +/- 142.8 to 794.1 +/- 77.3 mosmol/kgH(2)O, P < 0.001) or NDCS (336.0 +/- 123.3 to 786.5 +/- 63.3 mosmol/kgH(2)O, P = 0.019). Total urine output was higher in the PCDS than in WCDS and NDCS (P < 0.05). Linear regression analysis showed that, in PCDS, the osmotic thresholds for thirst (291.9 +/- 4.6 mosmol/kgH(2)O) and vasopressin release (291.1 +/- 2.9 mosmol/kgH(2)O) were higher compared with WCDS (286.6 +/- 1.8 and 286.0 +/- 3.6 mosmol/kgH(2)O, respectively) and NDCS (286.0 +/- 2.4 and 284.1 +/- 4.7 mosmol/kgH(2)O, respectively) (between groups P < 0.001 for both variables). Under conditions of euglycemia, PCDS have impaired renal response to vasopressin and elevated osmotic threshold for thirst and vasopressin release in response to dehydration. Under conditions of chronic hyperglycemia, these abnormalities may significantly contribute to the development of dehydration in PCDS.  相似文献   

6.
Water deprivation is associated with regional increases in sympathetic tone, but whether this is mediated by changes in brain stem regulation of sympathetic activity is unknown. Therefore, this study tested the hypothesis that water deprivation increases excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), by determining whether bilateral microinjection of kynurenate (Kyn; 2.7 nmol) into the RVLM decreases arterial pressure more in water-deprived than water-replete rats. Plasma osmolality was increased in 48-h water-deprived rats (313 +/- 1 mosmol/kgH2O; P < 0.05) compared with 24-h water-deprived rats (306 +/- 2 mosmol/kgH2O) and water-replete animals (300 +/- 2 mosmol/kgH2O). Kyn decreased arterial pressure by 28.1 +/- 5.2 mmHg (P < 0.01) in 48-h water-deprived rats but had no effect in water-replete rats (-5.9 +/- 1.3 mmHg). Variable depressor effects were observed in 24-h water-deprived animals (-12.5 +/- 2.4 mmHg, not significant); however, in all rats the Kyn depressor response was strongly correlated to the osmolality level (P < 0.01; r2 = 0.47). The pressor responses to unilateral microinjection of increasing doses (0.1, 0.5, 1.0, and 5.0 nmol) of glutamate were enhanced (P < 0.05) during water deprivation, but the pressor responses to intravenous phenylephrine injection were smaller (P < 0.05). These data suggest that water deprivation increases EAA drive to the RVLM, in part by increasing responsiveness of the RVLM to EAA such as glutamate.  相似文献   

7.
Effects of hypobaric hypoxemia on endocrine and renal parameters of body fluid homeostasis were investigated in eight normal men during a sojourn of 8 days at an altitude of 4,559 m. Endocrine and renal responses to an osmotic stimulus (5% hypertonic saline, 3.6 ml/kg over 1 h) were investigated at sea level and on day 6 at altitude. Several days of hypobaric hypoxemia reduced body weight (-2.1 +/- 0.4 kg), increased plasma osmolality (+5.3 +/- 1.4 mosmol/kgH(2)O), elevated blood pressure (+12 +/- 1 mmHg), reduced creatinine clearance (122 +/- 6 to 96 +/- 10 ml/min), inhibited the renin system (19.5 +/- 2.0 to 10.9 +/- 0.9 mU/l) and plasma vasopressin (1.14 +/- 0.16 to 0.38 +/- 0.06 pg/ml), and doubled circulating levels of norepinephrine (103 +/- 16 to 191 +/- 35 pg/ml) and endothelin-1 (3.0 +/- 0.2 to 6.3 +/- 0.6 pg/ml), whereas urodilatin excretion rate decreased from day 2 (all changes P < 0.05 compared with sea level). Plasma arginine vasopressin response and the antidiuretic response to hypertonic saline loading were unchanged, but the natriuretic response was attenuated. In conclusion, chronic hypobaric hypoxemia 1) elevates the set point of plasma osmolality-to-plasma vasopressin relationship, possibly because of concurrent hypertension, thereby causing hypovolemia and hyperosmolality, and 2) blunts the natriuretic response to hypertonic volume expansion, possibly because of elevated circulating levels of norepinephrine and endothelin, reduced urodilatin synthesis, or attenuated inhibition of the renin system.  相似文献   

8.
The purpose of this study was to determine if plasma osmolality alters baroreflex control of sympathetic activity when controlling for a change in intravascular volume; we hypothesized that baroreflex control of sympathetic activity would be greater during a hyperosmotic stimulus compared with an isoosmotic stimulus when intravascular volume expansion was matched. Seven healthy subjects (25 +/- 2 yr) completed two intravenous infusions: a hypertonic saline infusion (HSI; 3% NaCl) and, on a separate occasion, an isotonic saline infusion (ISO; 0.9% NaCl), both at a rate of 0.15 ml x kg(-1) x min(-1). To isolate the effect of osmolality, comparisons between HSI and ISO conditions were retrospectively matched based on hematocrit; therefore, baroreflex control of sympathetic outflow was determined at 20 min of a HSI and 40 min of an ISO. Muscle sympathetic outflow (MSNA) was directly measured using the technique of peroneal microneurography; osmolality and blood pressure (Finometer) were assessed. The baroreflex control of sympathetic outflow was estimated by calculating the slope of the relationship between MSNA and diastolic blood pressure during controlled breathing. Plasma osmolality was greater during the HSI compared with the ISO (HSI: 292 +/- 0.9 mosmol/kg and ISO: 289 +/- 0.8 mosmol/kg, P < 0.05). Hematocrits were matched (HSI: 39.1 +/- 1% and ISO: 39.1 +/- 1%, P > 0.40); thus, we were successful in isolating osmolality. The baroreflex control of sympathetic outflow was greater during the HSI compared with the ISO (HSI: -8.3 +/- 1.2 arbitrary units x beat(-1) x mmHg(-1) vs. ISO: -4.0 +/- 0.8 arbitrary units x beat(-1) x mmHg(-1), P = 0.01). In conclusion, when controlling for intravascular volume, increased plasma osmolality enhances baroreflex control of sympathetic activity in humans.  相似文献   

9.
Sweat Na(+) concentration ([Na(+)]) varies greatly among individuals and is particularly high in cystic fibrosis (CF). The purpose of this study was to determine whether excess sweat [Na(+)] differentially impacts thirst drive and other physiological responses during progressive dehydration via exercise in the heat. Healthy subjects with high-sweat [Na(+)] (SS) (91.0 ± 17.3 mmol/l), Controls with average sweat [Na(+)] (43.7 ± 9.9 mmol/l), and physically active CF patients with very high sweat [Na(+)] (132.6 ± 6.4 mmol/l) cycled in the heat without drinking until 3% dehydration. Serum osmolality increased less (P < 0.05) in CF (6.1 ± 4.3 mosmol/kgH(2)O) and SS (8.4 ± 3.0 mosmol/kgH(2)O) compared with Control (14.8 ± 3.5 mosmol/kgH(2)O). Relative change in plasma volume was greater (P < 0.05) in CF (-19.3 ± 4.5%) and SS (-18.8 ± 3.1%) compared with Control (-14.3 ± 2.3%). Thirst during exercise and changes in plasma levels of vasopressin, angiotensin II, and aldosterone relative to percent dehydration were not different among groups. However, ad libitum fluid replacement was 40% less, and serum NaCl concentration was lower for CF compared with SS and Control during recovery. Despite large variability in sweat electrolyte loss, thirst appears to be appropriately maintained during exercise in the heat as a linear function of dehydration, with relative contributions from hyperosmotic and hypovolemic stimuli dependent upon the magnitude of salt lost in sweat. CF exhibit lower ad libitum fluid restoration following dehydration, which may reflect physiological cues directed at preservation of salt balance over volume restoration.  相似文献   

10.
11.
To investigate fluid, electrolyte, and plasma vasopressin (PVP) and renin activity (PRA) responses, six men (20-35 yr) were immersed to the neck (NI) in water at 34.5 degrees C for six h after overnight food and fluid restriction. Diuresis was 1,061 +/- 160 (SE) ml/6 h during immersion and water balance was -1,285 +/- 104 ml/6 h. Preimmersion PVP was 0.7 +/- 0.2 pg/ml and increased to 3.0 +/- 0.6 pg/ml (P less than 0.05) at 6 h. PVP was unchanged at 1.2 +/- 0.1 pg/ml in the 6-h seated nonimmersion experiment at 25 degrees C. Plasma volume increased by 7.8 +/- 1.6% (P less than 0.05) at 60 min of NI and decreased thereafter. Serum osmolality was constant (292 +/- 1 mosmol/kg) throughout NI, whereas PRA decreased progressively from 1.9 to 0.5 ng angiotensin I X ml-1 X h-1 (P less than 0.05) at the end of immersion. In spite of moderate thirst just before NI, thirst sensations were attenuated and no water was consumed ad libitum during immersion. These data indicate that PVP is not suppressed when there is no fluid intake during immersion and suggest that the action of factors other than PVP suppression are necessary to explain the mechanism of immersion diuresis.  相似文献   

12.
The purpose of this study was to examine the relationship between osmolality and efferent sympathetic outflow in humans. We hypothesized that increased plasma osmolality would be associated with increases in directly measured sympathetic outflow. Muscle sympathetic outflow was successfully recorded in eight healthy subjects during a 60-min intravenous hypertonic saline infusion (HSI; 3% NaCl) on one day and during a 60-min intravenous isotonic saline (ISO) infusion (0.9% NaCl) on a different day. The HSI provides an osmotic and volume stimulus, whereas the ISO infusion provides a volume-only stimulus. Muscle sympathetic nerve activity was quantified using the technique of peroneal microneurography. Plasma osmolality increased during the HSI but not during the ISO infusion (ANOVA, P < 0.05). Sympathetic outflow differed between the trials (ANOVA, P < 0.05); during the HSI burst, frequency initially increased from 14.6 +/- 2.5 to 18.1 +/- 1.9 bursts/min; during the ISO infusion, burst frequency initially declined from 14.7 +/- 2.5 to 12.0 +/- 2.1 bursts/min. Plasma norepinephrine concentration was greater at the end of the HSI compared with the end of the ISO infusion (HSI: 297 +/- 64 vs. ISO: 202 +/- 49 pg/ml; ANOVA, P < 0.05). We conclude that HSI-induced increases in plasma osmolality are associated with increases in sympathetic activity in humans.  相似文献   

13.
The syndrome of inappropriate antidiuretic hormone (SIADH) is characterized by euvolemic hyponatremia. Patients with SIADH continue to drink normal amounts of fluid, despite plasma osmolalities well below the physiological osmotic threshold for onset of thirst. The regulation of thirst has not been previously studied in SIADH. We studied the characteristics of osmotically stimulated thirst and arginine vasopressin (AVP) secretion in eight subjects with SIADH and eight healthy controls and the nonosmotic suppression of thirst and AVP during drinking in the same subjects. Subjects underwent a 2-h infusion of hypertonic (855 mmol/l) NaCl solution, followed by 30 min of free access to water. Thirst rose significantly in both SIADH (1.5 +/- 0.6 to 8.0 +/- 1.2 cm, P < 0.0001) and controls (1.8 +/- 0.8 to 8.4 +/- 1.5 cm, P < 0.0001), but the osmotic threshold for thirst was lower in SIADH (264 +/- 5.5 vs. 285.9 +/- 2.8 mosmol/kgH(2)O, P < 0.0001). SIADH subjects drank volumes of water similar to controls after cessation of the infusion (948.8 +/- 207.6 vs. 1,091 +/- 184 ml, P = 0.23). The act of drinking suppressed thirst in both SIADH and controls but did not suppress plasma AVP concentrations in SIADH compared with controls (P = 0.007). We conclude that there is downward resetting of the osmotic threshold for thirst in SIADH but that thirst responds to osmotic stimulation and is suppressed by drinking around the lowered set point. In addition, we demonstrated that drinking does not completely suppress plasma AVP in SIADH.  相似文献   

14.
Maternal dehydration consistent with mild water deprivation or moderate exercise results in maternal and fetal plasma hyperosmolality and increased plasma arginine vasopressin (AVP). Previous studies have demonstrated a reduction in fetal urine and lung fluid production in response to maternal dehydration or exogenous fetal AVP. As fetal urine and perhaps lung liquid combine to produce amniotic fluid, maternal dehydration may affect the amniotic fluid volume and/or composition. In the present study, six chronically-prepared pregnant ewes with singleton fetuses (128 +/- 1 day) were water deprived for 54 h to determine the effect on amniotic fluid. Maternal plasma osmolality (306.5 +/- 0.9 to 315.6 +/- 1.9 mOsm/kg) and AVP (1.9 +/- 0.2 to 22.2 +/- 3.2 pg/ml) significantly increased during dehydration. Similarly, fetal plasma osmolality (300.0 +/- 0.9 to 312.7 +/- 1.7 mOsm/kg) and AVP (1.4 +/- 0.1 to 10.4 +/- 2.4 pg/ml) increased in parallel to maternal values. Amniotic fluid osmolality (276.8 +/- 5.7 to 311.6 +/- 6.5 mOsm/kg) and sodium (139.8 +/- 4.8 to 154.0 +/- 5.4 mEq/l) and potassium (9.1 +/- 1.3 to 13.9 +/- 2.4 mEq/l) concentrations increased while a significant (35%) reduction in amniotic fluid volume occurred (871 +/- 106 to 520 +/- 107 ml). These results indicate that maternal dehydration may have marked effects on maternal-fetal-amniotic fluid dynamics, possibly contributing to the development of oligohydramnios.  相似文献   

15.
16.
Plasma osmolality alters control of sympathetic activity and heart rate in animal models; however, it is unknown whether physiological increases in plasma osmolality have such influences in humans and what effect concurrent changes in central venous and/or arterial pressures may have. We tested whether physiological increases in plasma osmolality (similar to those during exercise dehydration) alter control of muscle sympathetic nerve activity (MSNA) and heart rate (HR) in humans. We studied 17 healthy young adults (7 women, 10 men) at baseline and during arterial pressure (AP) transients induced by sequential injections of nitroprusside and phenylephrine, under three conditions: control (C), after 1 ml/kg intravenous hypertonic saline (HT1), and after 2 ml/kg hypertonic saline (HT2). We continuously measured HR, AP, central venous pressure (CVP; peripherally inserted central catheter) and MSNA (peroneal microneurography) in all conditions. Plasma osmolality increased from 287 +/- 1 mosmol/kg in C to 290 +/- 1 mosmol/kg in HT1 (P < 0.05) but did not increase further in HT2 (291 +/- 1 mosmol/kg; P > 0.05 vs. C). Mean AP and CVP were similar between C and HT1, but both increased slightly in HT2. HR increased slightly but significantly during both HT1 and HT2 vs. C (P < 0.05). Sensitivity of baroreflex control of MSNA was significantly increased vs. C in HT1 [-7.59 +/- 0.97 (HT1) vs. -5.85 +/- 0.63 (C) arbitrary units (au).beat(-1).mmHg(-1); P < 0.01] but was not different in HT2 (-6.55 +/- 0.94 au.beat(-1).mmHg(-1)). We conclude that physiological changes in plasma osmolality significantly alter control of MSNA and HR in humans, and that this influence can be modified by CVP and AP.  相似文献   

17.
Before and 7-12 days after an Himalayan expedition CO2 equilibration curves were determined in the blood plasma of 12 mountaineers by in vitro and in vivo CO2 titration; in vivo osmolality changes (delta Osm x deltaPCO2(-1), deltaOsm x delta pH(-1), where PCO2 is the partial pressure of CO2) during the latter experiments yielded estimates of whole body CO2 storage. In vitro -delta[HCO3-] x delta pH(-1) [nonbicarbonate buffer capacity (beta) of blood] was increased 7 days after descent [before 31.3 (SEM 0.4) mmol x kgH2O(-1), after 38.3 (SEM 3.9) mmol x kgH2O(-1); P<0.05] resulting from an increased proportion of young erythrocytes; in additional experiments an augmented beta was found in young (low density cells) compared to old cells [<1.097 g x ml(-1): 0.216 (SEM 0.028) mmol x gHb(-1), >1.100 g x ml(-1): 0.145 (SEM 0.013) mmol x gHb(-1), where Hb is haemoglobin; P < 0.02]. In spite of increased Hb mass in vivo delta[CO2total] x deltaPCO2(-1) [0.192 (SEM 0.010) mmol x kgH2O(-1) x mmHg(-1)] and -delta[HCO3-] x delta pH(-1) [17.9 (SEM 1.0) mmol x kgH2O(-1)] as indicators of extracellular beta rose only slightly after altitude (7 days +16%, P<0.02; +7%, NS) because of haemodilution. The deltaOsm x deltaPCO2(-1) [0.230 (SEM 0.015) mosmol x kgH2O(-1) x mmHg(-1)] remained unchanged. Prealtitude differences in deltaOsm x delta pH(-1) between hypercapnia [-41 (SEM 5) mosmol x kgH2O(-1)] and hypocapnia [-20 (SEM 3) mosmol x kgH2O(-1); P<0.01] disappeared temporarily after return since the former slope was reduced. The high value during hypercapnia before ascent probably resulted from mechanisms stabilizing intracellular pH during moderate hypercapnia which were attenuated after descent.  相似文献   

18.
To investigate the hypothesis that diabetes induces nephrogenic diabetes insipidus, we studied the urine-concentrating ability in response to vasopressin (AVP) in 12 patients with insulin-dependent diabetes mellitus (IDDM) and 12 nondiabetic controls. Subjects were euglycemic-clamped, and after oral water loading, AVP was infused intravenously for 150 min. AVP induced a greater (P<0.001) rise in urine osmolality in controls (67.6+/-10.7 to 720+/-31.1 mosmol/kg, P<0.001) than in IDDM patients (64.3+/-21.6 to 516.7+/-89.3 mosmol/kg, P<0.001). Urinary aquaporin-2 concentrations after AVP infusion were higher in controls (611.8+/-105.6 fmol/mg creatinine) than in IDDM (462.0+/-94.9 fmol/mg creatinine, P = 0. 003). Maximum urine osmolality in IDDM was inversely related to chronic blood glucose control, as indicated by Hb A(Ic) (r = -0.87, P = 0.002). To test the hypothesis that improved glycemic control could reverse resistance to AVP, 10 IDDM subjects with poor glycemic control (Hb A(Ic) >9%) were studied before (B) and after (A) intensified glycemic control. Maximum urine osmolality in response to AVP increased with improved glycemic control (B, 443.8+/-49.0; A, 640.0+/-137.2 mosmol/kg, P<0.001), and urinary aquaporin-2 concentrations after AVP increased from 112.7 +/-69 to 375+/-280 fmol/mg creatinine (P = 0.006), with improved glycemic control. Poorly controlled IDDM is associated with reversible renal resistance to AVP.  相似文献   

19.
Maternal water restriction and the accompanying dehydration-induced anorexia may induce long-term physiological changes in offspring. We determined the impact of prenatal hypertonicity (Pre-Dehy) on offspring cardiovascular and osmoregulatory function. Pre-Dehy lambs were exposed to in utero hypernatremia (8- to 10-meq increase; 110-150 days of gestation) induced by maternal water restriction. Control lambs were born to ewes provided ad libitum water and food throughout gestation. After delivery, all ewes were provided ad libitum water and all newborns were allowed ad libitum nursing. Lambs were prepared with vascular and bladder catheters at 15 +/- 2 days of age and studied at 21 +/- 2 days. After a 2-h basal period, lambs received an infusion of hypotonic (0.075 M) NaCl (0.15 ml.kg(-1).h(-1) iv) for 2 h. Lamb arterial blood pressure was monitored, and blood samples were obtained before, during, and after infusion. During the neonatal basal period, Pre-Dehy lambs had significantly increased plasma osmolality (302 +/- 1 vs. 294 +/- 1 mosmol/kgH(2)O, P < 0.01), sodium levels (144 +/- 1 vs. 140 +/- 1 meq/l, P < 0.01), hematocrit (28 +/- 1% vs. 25 +/- 1%, P < 0.05), and mean arterial blood pressure (79 +/- 2 vs. 68 +/- 1 mmHg, P < 0.001) compared with control lambs. Despite the infusion of hypotonic saline, Pre-Dehy lambs maintained relative hypertonicity, hypernatremia, and hypertension. However, plasma arginine vasopressin, glomerular filtration rate, and urinary osmolar and sodium excretion and clearance (per kg body wt) were similar in the groups. Offspring of prenatally water-restricted ewes exhibit hypernatremia, hypertonicity, and hypertension, which persist despite hypotonic saline infusion. In utero hypertonicity and perhaps maternal nutrient stress may program offspring osmoregulation and systemic arterial hypertension.  相似文献   

20.
Dehydration increases the osmolality of body fluids and decreases the rate of sweating during thermal stress. By localizing osmotic stimuli to central nervous system tissues, this study assessed the role of central stimulation on sweating in a heat-stressed nonhuman primate. Lenperone-tranquilized patas monkeys (Erythrocebus patas n = 5), exposed to 41 +/- 2 degrees C, were monitored for calf sweat rate, rectal and mean skin temperatures, oxygen consumption, and heart rate during infusions (255-413 microliters) of hypertonic artificial cerebrospinal fluid (ACSF) into the third cerebral ventricle. ACSF made hypertonic with NaCl to yield osmolalities of 800 and 1,000 mosmol/kgH2O significantly decreased sweat rate compared with control ACSF (285 mosmol/kgH2O), achieving maximal reductions during infusion of 37 and 53%, respectively. Rectal temperature significantly increased during the recovery period, reaching elevations of 0.69 and 0.72 degrees C, respectively, at 20 min postinfusion. In contrast, ACSF made hypertonic with sucrose (800 mosmol/kgH2O) failed to change sweat rate or rectal temperature during infusion in three animals. Thus, intracerebroventricular infusions of hypertonic ACSF mimicked dehydration-induced effects on thermoregulation. The reduction in heat loss during infusion appeared to depend on an elevation in cerebrospinal fluid [Na+] and not osmolality per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号