首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The DNA-binding domain of Epstein-Barr virus nuclear antigen 1 was found by hydroxyl radical footprinting to protect backbone positions on one side of its DNA-binding site. The guanines contacted in the major groove by the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 were identified by methylation protection. No difference was found in the interaction of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 with tandemly repeated and overlapping binding sites.  相似文献   

2.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

3.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   

4.
Protein-induced bending of the simian virus 40 origin of replication   总被引:10,自引:0,他引:10  
A 3.5 S protein, isolated from mammalian nuclei, specifically binds to DNA fragments containing the simian virus 40 (SV40) origin of replication. Two distinct nucleoprotein complexes are formed, a complex with high electrophoretic mobility carrying probably only one protein molecule, and a complex with reduced electrophoretic mobility carrying probably two protein molecules per DNA fragment. Band shift competition as well as methylation interference assays locate the binding site of the protein in the A + T-rich "late" region of the origin between SV40 nucleotides 13 and 35. The late origin binding (LOB) protein and T antigen bind simultaneously to adjacent sites in the origin. Using circularly permuted DNA fragments of identical lengths we show that the LOB protein induces pronounced bending of the origin fragment. The bending center maps at the 5' end of the adenine tract with one bound protein molecule and at the 3' end when two LOB proteins are bound to one origin fragment.  相似文献   

5.
The SfiI restriction enzyme binds to DNA as a tetramer holding two usually distant DNA recognition sites together before cleavage of the four DNA strands. To elucidate structural properties of the SfiI-DNA complex, atomic force microscopy (AFM) imaging of the complexes under noncleaving conditions (Ca2+ instead of Mg2+ in the reaction buffer) was performed. Intramolecular complexes formed by protein interaction between two binding sites in one DNA molecule (cis interaction) as well as complexes formed by the interaction of two sites in different molecules (trans interaction) were analyzed. Complexes were identified unambiguously by the presence of a tall spherical blob at the DNA intersections. To characterize the path of DNA within the complex, the angles between the DNA helices in the proximity of the complex were systematically analyzed. All the data show clear-cut bimodal distributions centered around peak values corresponding to 60 degrees and 120 degrees. To unambiguously distinguish between the crossed and bent models for the DNA orientation within the complex, DNA molecules with different arm lengths flanking the SfiI binding site were designed. The analysis of the AFM images for complexes of this type led to the conclusion that the DNA recognition sites within the complex are crossed. The angles of 60 degrees or 120 degrees between the DNA helices correspond to a complex in which one of the helices is flipped with respect to the orientation of the other. Complexes formed by five different recognition sequences (5'-GGCCNNNNNGGCC-3'), with different central base pairs, were also analyzed. Our results showed that complexes containing the two possible orientations of the helices were formed almost equally. This suggests no preferential orientation of the DNA cognate site within the complex, suggesting that the central part of the DNA binding site does not form strong sequence specific contacts with the protein.  相似文献   

6.
Polyomavirus large T antigen binds to multiple 5′-G(A/G)GGC-3′ pentanucleotide sequences in sites 1/2, A, B, and C within and adjacent to the origin of viral DNA replication on the polyomavirus genome. We asked whether the binding of large T antigen to one of these sites could influence binding to other sites. We discovered that binding to origin DNA is substantially stronger at pH 6 to 7 than at pH 7.4 to 7.8, a range often used in DNA binding assays. Large T antigen-DNA complexes formed at pH 6 to 7 were stable, but a fraction of these complexes dissociated at pH 7.6 and above upon dilution or during electrophoresis. Increased binding at low pH is therefore due at least in part to increased stability of protein-DNA complexes, and binding at higher pH values is reversible. Binding to fragments of origin DNA in which one or more sites were deleted or inactivated by point mutations was measured by nitrocellulose filter binding and DNase I footprinting. The results showed that large T antigen binds cooperatively to its four binding sites in viral DNA, suggesting that the binding of this protein to one of these sites stabilizes its binding to other sites via protein-protein contacts. Sites A, B, and C may therefore augment DNA replication by facilitating the binding of large T antigen to site 1/2 at the replication origin. ATP stabilized large T antigen-DNA complexes against dissociation in the presence, but not the absence, of site 1/2, and ATP specifically enhanced protection against DNase I digestion in the central 10 to 12 bp of site 1/2, at which hexamers are believed to form and begin unwinding DNA. We propose that large T antigen molecules bound to these multiple sites on origin DNA interact with each other to form a compact protein-DNA complex and, furthermore, that ATP stimulates their assembly into hexamers at site 1/2 by a “handover” mechanism mediated by these protein-protein contacts.  相似文献   

7.
Neomembranes composed of either bovine brain lipid that contains sialoglycolipids or egg yolk lecithin that does not, were formed on an HPA sensor chip and used to study the binding of influenza A virus in real time by surface plasmon resonance. Virus bound only to the bovine brain lipid membrane. This was confirmed by an 84% reduction in virus binding after treatment of the neomembrane with neuraminidase. Binding was temperature dependent, being highest at 30-35 degrees C and lower at 10 degrees C. Surprisingly, the rate of complex formation was enhanced, rather than inhibited, by the presence of 1.34-25.2 x 10(6) molecules of free NANA per virus binding site and the rate of dissociation was lower suggesting that the complex was more stable. The free energy of association to form the transition complex was increased by 3 kJ mol(-1) and there was an almost 10-fold increase in the enthalpy of complex formation in the presence of free NANA. These results show the value of surface plasmon resonance for measuring complex molecular interactions in real time, and provide a model that can be used to study the effectiveness of inhibitors of attachment of influenza virus to its receptor molecules.  相似文献   

8.
9.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

10.
The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.  相似文献   

11.
Estrogen receptor (ER) from chicken liver and calf uterus were used to study the capacity and the characteristics of the receptor binding sites (acceptor sites) in chicken target cell nuclei. Binding studies were performed at a physiological salt concentration of 0.15 M KCl. Binding of liver ER to liver nuclei was temperature-dependent, showing a 9-fold increase between 0 and 28 degrees C. The maximal number of acceptor sites measured in this cell-free system (280 sites/nucleus) was considerably lower than measured in nuclei after in vivo administration of estrogen (820 sites/nucleus). Moreover incubation of nuclei with the liver ER preparation resulted in a substantial breakdown of nuclear DNA, making this ER less suitable for DNA binding studies. The temperature-activated calf uterine receptor bound to liver nuclei at 0 degrees C, at which temperature no DNA degradation was measured. To all chicken cell nuclei tested, the receptor bound with a high affinity (Kd = 0.4-1.0 nM). Nuclear binding displayed tissue specificity: oviduct greater than heart, liver greater than spleen greater than erythrocytes and was salt dependent. Calf uterine ER binding in liver nuclei ranged from 3000-6000 acceptor sites per nucleus when assayed under conditions of a constant protein or a constant DNA concentration. Nuclei isolated from estrogen-treated cockerels bound a 2-fold lower number of calf uterine ER complexes when compared to control nuclei. Incubation of nuclei with a fixed concentration of [3H]ER from liver and increasing concentrations of uterine non-radioactive-ER also resulted in a reduced binding of the liver receptor. Both types of experiments suggest that liver and uterine ER compete for a common nuclear acceptor site. Our data demonstrate that the ER from calf uterus is very useful as a probe to examine the nature of the acceptor sites in heterologous chicken target cell nuclei. The assay system functions at 0 degrees C, a temperature at which no DNA degradation occurs.  相似文献   

12.
Recognition of the DNA origin by the Epstein-Barr nuclear antigen 1 (EBNA1) protein is the primary event in latentphase genome replication of the Epstein-Barr virus, a model for replication initiation in eukaryotes. We carried out an extensive thermodynamic and kinetic characterization of the binding mechanism of the DNA binding domain of EBNA1, EBNA1452-641, to a DNA fragment containing a single specific origin site. The interaction displays a binding energy of 12.7 kcal mol-1, with 11.9 kcal mol-1 coming from the enthalpic change with a minimal entropic contribution. Formation of the EBNA1452-641.DNA complex is accompanied by a heat capacity change of -1.22 kcal mol-1 K-1, a very large value considering the surface area buried, which we assign to an unusually apolar protein-DNA interface. Kinetic dissociation experiments, including fluorescence anisotropy and a continuous native electrophoretic mobility shift assay, confirmed that two EBNA1.DNA complex conformers are in slow equilibrium; one dissociates slowly (t1/2 approximately 41 min) through an undissociated intermediate species and the other corresponds to a fast twostep dissociation route (t1/2 approximately 0.8 min). In line with this, at least two parallel association events from two populations of protein conformers are observed, with on-rates of 0.25-1.6x10(8) m-1 s-1, which occur differentially either in excess protein or DNA molecules. Both parallel complexes undergo subsequent firstorder rearrangements of approximately 2.0 s-1 to yield two consolidated complexes. These parallel association and dissociation routes likely allow additional flexible regulatory events for site recognition depending on site availability according to nucleus environmental conditions, which may lock a final recognition event, dissociate and re-bind, or slide along the DNA.  相似文献   

13.
Phenylamidine cationic groups linked by a furan ring (furamidine) and related symmetric diamidine compounds bind as monomers in the minor groove of AT sequences of DNA. DB293, an unsymmetric derivative with one of the phenyl rings of furamidine replaced with a benzimidazole, can bind to AT sequences as a monomer but binds more strongly to GC-containing minor-groove DNA sites as a stacked dimer. The dimer-binding mode has high affinity, is highly cooperative and sequence selective. In order to develop a better understanding of the correlation between structural and thermodynamic aspects of DNA molecular recognition, DB293 was used as a model to compare the binding of minor-groove agents with AT and mixed sequence DNA sites. Isothermal titration calorimetry and surface plasmon resonance results clearly show that the binding of DB293 and other related compounds into the minor groove of AT sequences is largely entropy-driven while the binding of DB293 as a dimer into the minor groove of GC-containing sequences is largely enthalpy-driven. At 25 degrees C, for example, the AT binding has DeltaG degrees, DeltaH degrees and TDeltaS degrees values of -9.6, -3.6 and 6.0 kcal/mol while the values for dimer binding to a GC-containing site are -9.0, -10.9 and -1.9 kcal/mol (per mol of bound compound), respectively. These results show that the thermodynamic components for binding of compounds of this type to DNA are very dependent on the structure, solvation and sequence of the DNA binding site.  相似文献   

14.
The DNA replication, plasmid segregation and transactivation functions of Epstein-Barr nuclear antigen 1 (EBNA1) require the binding of EBNA1 to specific DNA recognition sites in the two non-contiguous functional elements of the Epstein-Barr virus latent origin of replication, oriP . EBNA1 molecules bound to these elements interact with each other resulting in the formation of looped individual DNA molecules and multiply linked DNA molecules. We have developed a glycerol gradient sedimentation assay suitable for quantitative analysis of the DNA linking activity of EBNA1 and used it to investigate the contribution of EBNA1 residues to the linking interaction and the mechanism of the interaction. Using overlapping internal deletion mutants, we found that two regions of EBNA1 can cause DNA linking, amino acids 40-100 and 327-377, but that the stabilities of the linked complexes formed by the two regions differ dramatically; only complexes formed through the latter region are stable to glycerol gradient sedimentation analysis. Mechanistic studies using EBNA1 in combination with GAL4-EBNA1 fusion proteins showed that linking interactions mediated by residues 327-377 are homotypic. Our results also suggest that only the DNA-bound form of EBNA1 participates in the protein-protein interactions seen in DNA linking.  相似文献   

15.
16.
A D Frankel  G K Ackers  H O Smith 《Biochemistry》1985,24(12):3049-3054
A method is described for measuring equilibrium constants of DNA-protein interactions using gel chromatography. This technique has been used to study the sequence-specific interaction of the HinfI restriction endonuclease with DNA. HinfI has a monomeric molecular weight of 31000 and exists as a dimer in its active form. The protein binds to supercoiled DNA molecules containing its recognition site with an apparent free energy of -13.9 kcal/mol of sites. This interaction is highly salt sensitive and causes a release of 3.4 ion pairs. The affinity of the nuclease for its recognition site is largely independent of both pH (6.5-8.5) and temperature (7-35 degrees C) and was not affected by variations in the degenerate middle position of the site. Linear DNA fragments containing the HinfI recognition site were bound as tightly as supercoiled molecules. Binding to nonspecific DNA sites or to methylated DNA sites was approximately 6 orders of magnitude weaker. In general, enzyme activity and binding affinity paralleled each other.  相似文献   

17.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

18.
Site-specific excision of integrated polyoma DNA   总被引:17,自引:0,他引:17  
Cyp cells are permissive murine cells carrying a thermosensitive polyoma virus genome that remains integrated at 39 degrees C, but is effectively excised and replicated after transfer to 33 degrees C. In rare subclones of the Cyp line, temperature shift-down yields predominantly homogeneous populations of chimeric molecules that appear to reflect the circularization of defined segments of DNA spanning one of the junctions between the integrated viral genome and the adjacent cellular DNA. Such accurate and frequent excision requires a specific recombination mechanism. We examined both the cellular and the viral sequences that cross-over to generate one of these chimeric molecules, Rm I. The homology at the cross-over site is one of 1 or 2 base pairs at most; patches of homology, amounting in total to 19 or 20 base pairs, are found in perfect register on both sides of this site; and the two stretches of DNA that are joined to form RM I contain similar 12-14 base pair sequences (5'- CTCCTTTACAGAGG -3' and 5'- CTCCTTTCAAGG -3') in opposite orientations.  相似文献   

19.
A fatal case of a Burkitt's lymphoma which occurred in a 34-year-old German woman during pregnancy is described. Nearly all organs showed either diffuse or nodular infiltration by tumor cells. Placenta and fetus were free of detectable tumor tissue. The patient had extremely high antibody titers (1 : 2056), both against Epstein-Barr virus capsid antigen (VCA) and the early antigen complex (EA). Within the tumor cells the Epstein-Barr virus-specific nuclear antigen EBNA and viral DNA was detected. A cell line established from a tumor biopsy displayed a translocation involving chromosomes 2 and 8. The role of Epstein-Barr virus in the development of Burkitt's lymphoma is discussed.  相似文献   

20.
The nuclear estrogen receptor from calf uterus was used to investigate the possible relationship between receptor transformation (4S to 5S) and receptor activation (DNA binding). Receptors extracted from nuclei after exposure of uterine tissue tc [3H]estradiol sedimented at 5.2S, the characteristic value of the transformed receptor. After storage at -20 degrees C the receptor sedimented at 4.0S, indicating conversion of the 5S form into the non-transformed 4S form. Upon reincubation at 28 degrees C the 4S form transformed into the 5S form following second-order kinetics. The rate constant obtained was 4.3 x 10(7) M-1 min-1, a value identical to that reported for the cytosol receptor. These data show that receptor transformation is reversible. Molybdate (10-50 mM) was not able to prevent receptor transformation in the nuclear extract, but was inhibitory in cytosol. This suggests that molybdate does not prevent receptor transformation, but rather inhibits disaggregation of the 8S oligomer into the 4S monomer. In DNA-binding assays (DNA-cellulose or nuclei) the non-transformed (4S) and transformed (5S) states of the nuclear estrogen receptors displayed identical affinities for DNA. The present data show that 4S to 5S transformation of nuclear receptors follows a readily reversible process, but this process is not an essential step for the exposure of the receptors' DNA-binding site. Although the physiological function of the 5S form remains unclear it may be important for the recognition of specific gene regulatory sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号