首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Wet tropical forest trees display a wide range of leaf phenology dynamics. However, the interrelation between deciduousness, water status, and leaf and stem characteristics have been poorly investigated compared with dry forests. We studied wet forest trees to answer the following questions: (1) do water regulation modes (iso/anisohydric behavior) of evergreen species differ from those found in deciduous species? (2) Does leaf water potential (ΨL) influences leaffall and emergence dynamics? (3) Are leaf and stem characteristics consistent across evergreen and deciduous trees? We evaluated vegetative phenology, ΨL, and leaf and stem characteristics of six evergreen and three deciduous species monthly for 2 yr. Species exhibited different leaffall and emergence dynamics, as well as different water regulation modes, independent of their deciduousness. Thus, the relationship between leaf phenology and water regulation behaviors appears to be a species‐specific property rather than a functional group attribute. ΨL had no direct influence on the dynamics of leaffall and/or emergence, indicating that this process is not modulated by water availability alone. Individual groups of evergreen and deciduous species could not be identified using principal component analysis (PCA), but a decoupling was observed in the leaf and stem economics spectra. The lack of an interrelation between deciduousness and iso/anisohydry, as well as the independence of leaf and stem trade‐offs, emphasizes that more systematic measurements of vegetative phenology and ecophysiological characteristics are necessary to advance our knowledge of leaf habit and water regulation behaviors based on the functional traits of wet forest plants.  相似文献   

3.
《植物生态学报》2017,41(6):650
Aims Branches and leaves are the two main structural units of tree crown composition. Among the adaptive strategies of plants, the functional traits of branches and the relationships between branch traits and leaf traits determine the capacity of trees to access light and space. In this study, our objective is to test the hypothesis that leaf display efficiency is affected by the stem length to stem slender ratio within current-year twigs.Methods The stem length to stem slender ratios of current-year twigs were used as the proxy of stem structure traits. Leaf area ratio (total leaf area per stem mass), leaf density (leaf number per stem length) and leaf/stem mass ratio (total leaf mass per stem mass) were used as the proxies of leaf display efficiency. The relationship between stem structure traits and leaf display efficiency within current-year twigs were studied for 25 evergreen and 60 deciduous broadleaved woody species in Qingliang Mountain, Zhejiang, China. The standardized major axis estimation method was used to examine the scaling relationship between stem structural traits and leaf display efficiency within current-year twigs.Important findings The proxies of leaf display efficiency, measured by leaf area ratio, leaf density or leaf/stem mass ratio, were all significantly and negative correlated with stem length to stem slender ratio within current-year twigs in both evergreen and deciduous broadleaved woody species. This suggested that leaf display efficiency decreased with stem length to stem slender ratios within current-year twigs, which may reflect the role of mechanical safety and light within twigs. The slope of the relationship between leaf display efficiency and stem long-dimension structure traits in evergreen species was not significantly different from the one in deciduous species. In contrast, the y-intercept of the relationship between leaf density and stem long-dimension structure traits was significantly larger in evergreen species than in deciduous species, i.e. the leafing intensity of evergreen species was higher than that of deciduous species. Individual leaf area and specific leaf area were smaller in evergreen species than in deciduous species, which resulted in deciduous species have a larger leaf area per stem mass and leaf mass per stem mass at a given stem length to stem slender ratio compared to evergreen species. It may reflect the conservative adaptive strategy of high consumption and slow benefit in evergreen species. Our results demonstrated that leaf display efficiency could be affected by stem length, and would change with leaf life-span (deciduous versus evergreen).  相似文献   

4.
 采用开顶式生长室(Open-top chamber, OTC)模拟增温对植被影响的研究方法, 研究了川西亚高山林线交错带糙皮桦(Betula utilis) 和岷江冷杉(Abies faxoniana)幼苗物候及生长特性对模拟增温的响应。结果表明, 温度升高使岷江冷杉幼苗芽开放时间显著提前(15.2 d); 糙 皮桦春季芽物候期变化不显著, 而落叶时间明显推迟(19.7 d), 叶寿命延长(22.8 d)。与对照(CK)相比, OTC内糙皮桦叶面积和岷江冷杉叶片长度及两者侧枝生长速率都显著加快。模拟增温对两物种基径相对生长速率都表现为正效应, 增温对两物种枝叶特性及分布格局表现为不同程度 的正效应、负效应或无影响。不同功能型两物种对模拟增温响应方式存在一定程度差异。  相似文献   

5.
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti‐herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade‐off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf‐trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf‐trait syndromes. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

6.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

7.
To explain why the composition of evergreen and deciduous forests changes along air temperature gradients, we measured several traits of single leaves from temperate deciduous and evergreen broadleaf trees with simultaneous and successive leaf emergence growing at different altitudes in the field. The parameters included seasonal net photosynthetic rate, longevity, mass per area, nitrogen content, and photosynthetic nitrogen-use efficiency. With decreasing altitude, the leaf longevity of deciduous broadleaf trees increased, whereas the maximum net photosynthetic rate decreased. In contrast, leaf longevity of evergreen broadleaf trees decreased, whereas the minimum net photosynthetic rate in winter increased. Along the air temperature gradient, the annual production of deciduous trees with simultaneous leaf emergence may be constant, because the integrated lifetime net photosynthetic rate (ILNPR) of a single leaf changed little. In comparison, deciduous trees with successive leaf emergence may show enhanced annual production with increasing air temperature, by increasing the total leaf number per branch and tree under an extended growing season. Temperate evergreen broadleaf tree species may also show increased annual production with increasing air temperature by sufficiently raising the number of the first-year leaves to the total leaves of branch and tree, which is accelerated by raising the integrated first-year net photosynthetic rate of the single leaf, despite little change in the ILNPR. With increasing air temperature from cool-temperate to warm-temperate zones, evergreen broadleaf tree species gain an advantage of the annual production over deciduous broadleaf tree species with simultaneous leaf emergence.  相似文献   

8.
In tropical forests, deciduousness is an outcome of integrated effect of drought, tree characteristics and soil moisture conditions and thus it is a reliable indicator of seasonal drought experienced by different tree species. Variations in the deciduousness are associated with several ecophysiological characteristics, such as varying allocation pattern of metabolic products, resource capture and conservation, water relations and stem water storages, annual carbon sequestration, timing of reproductive event initiation, extent of separation of vegetative and reproductive events and leaf strategies, and it helps in maintenance of water balance and protection of tree organs during the seasonal drought. Tropical forests support mosaics of tree functional types showing marked differences in the duration of deciduousness (from leaf exchanging to >8 months deciduous), as a result of varying degree of water stress experienced by physiognomy, distribution and wood anatomy of tropical trees. Wide variations in deciduousness in the same species growing at different sites suggest the high sensitivity of tropical trees to small changes in growing habitat. In the present review we have explored the ecological significance of deciduousness in tropical trees with emphasis on: (a) inter- and intraspecies plasticity in deciduousness, (b) various capacity adaptations related with the duration of deciduousness, (c) relationship between tree stem water status and deciduousness, and (d) probable effect of impending climate change on tropical trees. An attempt has also been made to establish deciduousness as climate change indicator in the dry tropics. There is need to develop capabilities to detect and predict the impact of climate change on deciduousness through long-term phenological network in tropics. Remote sensing techniques can generate valuable ecological information such as leaf level drought response and phenological patterns. Deciduousness has the potential to emerge as an important focus for ecological research to address critical questions in global modeling, monitoring, and climate change.  相似文献   

9.
The relationships between foliage permanence and flowering throughout the year were analyzed in 92 woody species of Cerrado vegetation categorized as either deciduous (DE), semideciduous (SD) or evergreen (EV). Flowering of DE, SD and EV species was investigated via three variables, measured over the course of the year: flowering duration (FLD), calculated as the number of months in flower in each species; flowering distribution (FDI), calculated as the number of species in flower per month; and flowering peak (FPE), defined as the four consecutive months yielding the highest number of species in flower. The months with the highest numbers of species in flower were October (52 species), September (50) and August (49). These months correspond to the period of transition from the dry season to the wet season. In the majority of species studied, seasonal climatic factors were strong enough to induce fruit formation in the dry season and seed dispersal in the following wet season, when sufficient water was available to support germination and plantlet growth. However, significant differences in FLD, FDI and FPE were found among the leaf phenological groups. High FLD in EV species is likely favored by the continuous input of resources from the year-round foliage. In contrast, DE species employ reserves of carbon, water and nutrients to form new leaves and flowers on a crown free of foliage at the end of the dry season. In DE species, their low FLD may reduce the impact of flowering on reserve consumption. SD species showed an intermediate level of foliage persistence, resulting in intermediate FLD values. In addition, SD species exhibited a different pattern of flowering distribution from those of DE and EV species. Many SD species have two flowering periods per year. The first period occurs when the crowns are full of leaves, in the middle of the dry season in June, similar to EV species. The second occurs when only half of the original foliage area is present, near the peak of the dry season in September, similar to DE species. Therefore, despite a strong influence of seasonal climatic conditions on the flowering behavior of DE, SD and EV woody species of Cerrado vegetation, these leaf phenological groups differ significantly in FLD, FDI and FPE.  相似文献   

10.
The seasonal savannas (cerrados) of Central Brazil are characterized by a large diversity of evergreen and deciduous trees, which do not show a clear differentiation in terms of active rooting depth. Irrespective of the depth of the root system, expansion of new foliage in deciduous species occurs at the end of the dry season. In this study, we examined a suite of leaf traits related to C assimilation, water and nutrients (N, P) in five deciduous and six evergreen trees that were among the dominant families of cerrado vegetation. Maximum CO2 assimilation on a mass basis (Amass) was significantly correlated with leaf N and P, and specific leaf area (SLA; leaf area per unit of leaf mass). The highest leaf concentrations of both nutrients were measured in the newly mature leaves of deciduous species at the end of the dry period. The differences in terms of leaf N and P between evergreen and deciduous species decreased during the wet season. Deciduous species also invested less in the production of non-photosynthetic leaf tissues and produced leaves with higher SLA and maintained higher water use efficiency. Thus, deciduous species compensated for their shorter leaf payback period by maintaining higher potential payback capacity (higher values of Amass) and lower leaf construction costs (higher SLA). Their short leafless period and the capacity to flush by the end of the dry season may also contribute to offset the longer payback period of evergreen species, although it may involve the higher cost of maintaining a deep-root system or a tight control of plant water balance in the shallow-rooted ones.  相似文献   

11.
Summary The relationships between the amounts of foliage and heights of trees were studied for the dominant understory tree species, including three evergreen and three deciduous species, in a secondary forest of Chamaecyparis obtusa Endl. The relationships showed two phases: leaf increasing and stationary phases. In the leaf-increasing phase, the height growth allowed these species to expand the canopy by increasing the number of leaves. In the stationary phase, the number of leaves was relatively constant number irrespective of tree height from 160 to 400 cm. The number of leaves in the stationary phase represents the maximum number of leaves that can be supported by trees under shady conditions. From the analyses of vertical distributions of leaves in six species, mono- and multi-layer foliage distributions were detected. Two evergreen species, Eurya japonica and Cleyera japonica, showed multi-layer foliage distributions, whereas three deciduous species, Lyonia ovalifolia, Rhododendron reticulatum and Vaccinium hirtum, and one evergreen species, Pieris japonica, showed mono-layer foliage distributions. The relationships between the weights of non-photosynthetic and photosynthetic organs of the six species were examined. The proportion of non-photosynthetic organs increased with tree height. The understory species attained the stationary phase and were maintained by minimizing their investment in non-photosynthetic organs, i.e. their height growth was arrested by the shady conditions under the crown trees.  相似文献   

12.
The functional adjustments of winter-deciduous perennials to Mediterranean conditions have received little attention. The objectives of this study were: (i) to determine whether Amelanchier ovalis, a winter-deciduous shrub of Mediterranean and sub-Mediterranean regions, has nutritional and phenological traits in common with temperate zone deciduous trees and shrubs and (ii) to determine the constraints of Mediterranean environmental conditions on these traits. Over two years, phenology and nitrogen, and phosphorus concentrations were monitored monthly in the crown of A. ovalis. Leaf longevity, survival and nutrient resorption from senescing leaves were used to infer nutrient use efficiency and retention times of nutrients within the crown. In A. ovalis, bud burst was much earlier than in temperate deciduous trees and shrubs. Most vegetative and reproductive growth occurred in spring. Limited phenological development took place during the summer drought period. Unexpectedly, leaf shedding was very gradual, which might be related to water shortages in summer. Leaf longevity, nutrient resorption from senescing leaves, and maximum leaf nutrient concentrations indicated that nutrient retention times were short and nutrient use efficiency was low compared to that found in temperate deciduous plants and co-occurring Mediterranean evergreens. A. ovalis exhibited phenological development appropriate for a Mediterranean climate, although its limited ability to retain nutrients likely restricts the types of sites that it can occupy.  相似文献   

13.
Foliage dynamics of three functional tree types representing major components of the tropical montane evergreen forest in southern part of Central Ethiopia were compared. The species were Podocarpus falcatus (evergreen gymnosperm), Prunus africana (evergreen broadleaf), and Croton macrostachyus (facultative deciduous). The hypothesis examined is that in such tropical trees, endogenous control of foliage dynamics by the leaf life-spans (LLS) is largely dominant over external signals. Crown foliage turnover, leafiness of twigs, LLS, photosynthetic performance, respiration rate, specific leaf area, and relative growth rates of the stems were investigated. Foliage dynamics and leafiness of the twigs were monitored over 2?years while leaf traits were followed over 3?months. The degree of inter and intra-individual synchronization of foliage phenophases was examined to get an estimate of the contributions of endogenous and external signals to the dynamics of the foliages. Autoregression analysis indicated significant influence of the moisture regime on leaf sprouting of Croton and Podocarpus. During pronounced dry periods, new leaves were not developed. Analysis of phenological data using circular statistics revealed that in spite of strong inter-individual synchronization of leaf flush and fall (Podocarpus and Croton), the dynamics of individual parts of the crowns were less synchronized. LLS was independent of climate factors and it had substantial contribution to the control of foliage turnover. Moreover, examination of ecophysiological traits of developing leaves of the studied functional types showed differing patterns with LLS corroborating the ecophysiological characteristics. Although overlaid by fungal infestation, both the foliage and ecophysiological properties of Prunus resemble that of Podocarpus but the former exhibited a shorter LLS and slightly higher metabolic rates. Nevertheless, all species reacted positively to high moisture with respect to stem growth. In spite of largely differing weather conditions of the 2?years, direct competitive advantage of one of the species over the others could not be detected.  相似文献   

14.
不同物种间的功能性状差异是自然生态系统中物种共存的基础, 而物种内个体间的性状变异对物种的共存和分布同样具有重要作用。本文以湖北星斗山自然保护区亚热带常绿落叶阔叶混交林内28种主要树种(通过物种多度排序获得, 其中常绿和落叶树种各14种)为研究对象, 探讨不同叶习性树种的4种功能性状(比叶面积、叶干物质含量、叶面积和比茎密度)在种间和种内的差异程度。结果表明: (1)常绿和落叶树种在4种功能性状上均存在显著差异, 常绿树种的比叶面积和叶面积显著低于落叶树种, 但叶干物质含量和比茎密度则显著高于落叶树种; (2)比叶面积的变化主要来源于叶习性(57.49%), 叶面积变化主要来源于种间(66.80%)和种内变异(27.52%), 叶干物质含量的变化主要来源于种间(38.12%)和种内(33.88%)变异, 但比茎密度的变化主要来源于种内变异(51.50%), 其次为种间变异(32.52%); (3)常绿和落叶树种种间水平的性状相关性可能掩盖各功能性状之间的相关性。种内变异能够显著影响群落间的植物功能性状差异, 但不同功能性状的种内变异程度存在差异。  相似文献   

15.

The present study was carried out to analyze the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy infestation by lianas. A total of 11 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (with or without liana). In the liana-free environment (L), evergreen trees had significantly higher leaf tissue density (LTD) and total chlorophyll (CHLt) than the deciduous species. Whereas the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed with the well-established global trait-pair relationships (leaf thickness (LT) vs. SLA, Nmass vs. LT, SLA vs. Nmass, and LDMC vs. SLA). There was a significant difference between L+ and L individuals in leaf area (LA), petiole length (PL), SLA, LDMC, and CHLt in the deciduous species. On the other hand, evergreen species showed marked differences across LT, SLA, LTD, Nmass, and chlorophyll components between L+ and L individuals of the same species. The results revealed the differential impact of liana colonization on the host trees with contrasting leaf habits. The deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environments (L), whereas evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment and further, the magnitude of such impact may vary among species of different leaf habits. The result also indicated the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species explaining the patterns of species co-existence.

  相似文献   

16.
Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.  相似文献   

17.
Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most (∼70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.  相似文献   

18.
In tropical dry forests, spatial heterogeneity in soil water availability is thought to determine interspecific differences in key components of resource use strategies, such as leaf phenology and xylem function. To understand the environmental drivers of variation in leaf phenology and xylem function, we explored the relation of soil water potential to topographic metrics derived from a digital elevation model. Subsequently, we compared nine xylem hydraulic, mechanical and storage traits in 18 species in three phenological classes (readily deciduous, tardily deciduous, and evergreen) in the dry tropical forest of Chamela, Mexico. Soil water potential was negatively correlated with elevation, insolation and water flow accumulation. Evergreen species characterized low-elevation moist sites, whereas deciduous species dominated hills and dry sites. Overall, evergreen species had lower xylem specific conductivity than deciduous species, and tardily deciduous species were different from readily deciduous and evergreen species in five of eight xylem traits. In dry tropical forests, water availability promotes divergence in leaf phenology and xylem traits, ranging from low wood density, evergreen species in moist sites to a combination of low wood density, readily deciduous species plus high wood density, tardily deciduous species in dry sites.  相似文献   

19.
Photosynthetic capacity on area (P Nmaxa ) and mass bases (P Nmaxm ) and specific leaf mass (SLM) were determined in twenty adult woody species of Cerrado under field conditions. The mean values obtained for P Nmaxa [11.4 μmol(CO2) m-2 s-1], P Nmaxm [78 μmol(CO2) kg-1 s-1] and SLM (150 g m-2) were compared with mean values found for deciduous and evergreen sclerophyllous species growing also under field conditions. P Nmaxm and SLM were statistically different among deciduous, Cerrado and evergreen sclerophyllous species. There was a gradual decrease of P Nmaxm and an increase of SLM from deciduous to evergreen sclerophyllous species. Woody species of Cerrado showed mean values of P Nmaxm and SLM between deciduous and evergreen species indicating its brevideciduousness. The comparison using mean values of P Nmaxm and SLM belonging to deciduous, Cerrado and evergreen sclerophyllous species was suitable to confirm the interdependence among leaf life span, structure and physiological attributes of leaf. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Hydraulic traits and hydraulic-related structural properties were examined in three deciduous (Hevea brasiliensis, Macaranga denticulate, and Bischofia javanica) and three evergreen (Drypetes indica, Aleurites moluccana, and Codiaeum variegatum) Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Xylem water potential at 50% loss of stem hydraulic conductivity (P50stem) was more negative in the evergreen tree, but leaf water potential at 50% loss of leaf hydraulic conductivity (P50leaf) did not function as P50stem did. Furthermore, P50stem was more negative than P50leaf in the evergreen tree; contrarily, this pattern was not observed in the deciduous tree. Leaf hydraulic conductivity overlapped considerably, but stem hydraulic conductivity diverged between the evergreen and deciduous tree. Correspondingly, structural properties of leaves overlapped substantially; however, structural properties of stem diverged markedly. Consequently, leaf and stem hydraulic traits were closely correlated with leaf and stem structural properties, respectively. Additionally, stem hydraulic efficiency was significantly correlated with stem hydraulic resistance to embolism; nevertheless, such a hydraulic pattern was not found in leaf hydraulics. Thus, these results suggest: (1) that the evergreen and deciduous tree mainly diverge in stem hydraulics, but not in leaf hydraulics, (2) that regardless of leaf or stem, their hydraulic traits result primarily from structural properties, and not from leaf phenology, (3) that leaves are more vulnerable to drought-induced embolism than stem in the evergreen tree, but not always in the deciduous tree and (4) that there exists a trade-off between hydraulic efficiency and safety for stem hydraulics, but not for leaf hydraulics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号